Click to Chat
1800-2000-838
+91-120-4616500
CART 0
Use Coupon: CART20 and get 20% off on all online Study Material
Welcome User
OR
LOGIN
Complete Your Registration (Step 2 of 2 )
Live Classes IITIAN Teachers
Unlimited Practice & Doubt Removal
Classes 5 Days/Week 3 Hours/Day
All India Test Series with Analysis
Class Recordings for Revision
GAUSS THEOREM To understand the Gauss law first we have to define the quantity Electric Flux. Electric Flux The concept of electric ?ux involves a surface and the (vector) values of the electric ?eld at all points of the surface. To introduce the way that ?ux is calculated, we start with a simple case. We will consider a ?at surface of area a and an electric ?eld which is constant (that is, has the same vector value) over the surface. The surface is characterized by the “area vector” a. This is a vector which points perpendicularly (normal) to the surface and has magnitude a. The surface and its area vector along with the uniform electric ?eld are shown in the side figure. Actually, there’s a little problem here: There are really two choices for the vector a. (It could have been chosen to point in the opposite direction; it would still be normal to the surface and have the same magnitude.) However in every problem where we use electric ?ux, it will be made clear which choice is made for the “normal” direction. In words, electric flux is equal to the number of electric field lines that pass through a particular surface multiplied by the area of the surface. Electric flux is denoted by the symbol ?_{E}. The electric flux ?_{E} through a Gaussian surface is proportional to the net number of electric field lines passing through that surface. So, Now, for this simple case, the electric ?ux Φ is given by where theta is the angle between E and a. ?_{E }=Ea cosθ Here θ is the angle between Electric field vector () and area vector (). If is perpendicular to a fl at surface having a total area A, then the electric flux through this surface would be, ?_{E }=Ea. In this case, the flux is just the magnitude of the electric field multiplied by the area of the surface. Flux is a scalar, just an ordinary number; it is not a vector. Gauss Law The electric flux ?_{E} through any closed surface is equal to the net charge inside the surface, Q inside, divided by ε_{0}: ?_{E}=Q_{enc}/ ε_{0} Or, = Q_{enc}/ ε_{0} So, Though it’s not obvious, Gauss’s law describes how charges create electric fields. In principle, it can always be used to calculate the electric field of a system of charges or a continuous distribution of charge. In practice, the technique is useful only in a limited number of cases in which there is a high degree of symmetry, such as spheres, cylinders, or planes. With the symmetry of these special shapes, the charges can be surrounded by an imaginary surface, called a Gaussian surface. This imaginary surface is used strictly for mathematical calculation, and need not be an actual, physical surface. Refer this video for better understanding about Gauss law of electric field Point to remember to solve the problem applying Gauss Law (a) Recognize the principle:- To apply Gauss’s Law,you must first calculate the electric flux through a Gaussian surface. The choice of the Gaussian surface is key. (b) Sketch the problem:- Your drawing should show the charge distribution. Use the symmetry of this distribution to also sketch the electric field. The Gaussian surface should match the symmetry of the electric field. (c) Identify the relationships:- Your Gaussian surface should satisfy one or more of the following conditions: (i) has constant magnitude over all or much of the surface and makes a constant angle with the surface. The most convenient surface is one that is perpendicular to at all (or most) points. (ii) may be zero over a portion of the surface. The flux through that part of the surface is zero. (iii) may be parallel to some part of the surface. The flux through that part of the surface is zero. (d) Solve:- First calculate the total electric flux through the entire Gaussian surface. Then fi nd the total electric charge inside the surface and apply Gauss’s law to solve for . Refer this simulation for movement of charges The charge Q_{encl} is the net charge enclosed by the arbitrary close surface of our choice. It does NOT matter where or how much charge is distributed inside the surface. The charge outside the surface does not contribute. Electric linked with a surface gives an idea of the number of electric lines of force passing through the surface. Lines of force leaving a surface produce positive electric flux. Lines of force entering a surface produce negative electric flux. Lines of force parallel to the surface do not produce any electric flux. The integral is over the value of E on a closed surface of our choice in any given situation Problem 1:- Find the field outside a charged solid sphere of radius R and total charge q. Solution:- Draw a spherical surface of radius r>R in the below figure. This is called Gaussian surface. Gauss’s law says that for this surface, = Q_{enc}/ ε_{0} Here, Q_{enc} =q The direction of is along the radially outward which as the same area vector . So the angle θ between and is 0^{°}. ^{ } (Since, cos0^{°} = 1) The magnitude of is constant over the Gaussian surface, so it comes outside the integral. = E (4πr^{2}) (Since, surface area da=4πr^{2}) As the total charge enclosed by Gaussian surface is q, therefore accordance to Gauss Theorem, = Q_{enc}/ ε_{0} E (4πr^{2}) = q/ ε_{0} So, = q/4π ε_{0}r^{2} From the above observation we conclude that, the field outside the sphere is exactly the same as it would have been if all the charge had been concentrated at the center. _______________________________________________________________________________________________ Problem 2:- An infinite plane carries a uniform surface charge σ. Find its electric field. Solution:- To solve this problem, our first job is choose the Gaussian surface. Here the Gaussian surface is “pillbox”. Draw a Gaussian pill box and extends it to equal distances above and below the plane, which as shown in side figure. In accordance to Gauss law, = Q_{enc}/ ε_{0} In this case, Q_{enc} = σA. Here A is the area of the lid of the pillbox. By symmetry, points away from the plane (upward for points above, downward for points below). So the angle θ between and is 0^{°} for top and button surfaces and 90^{°} for side surfaces. Thus, the top and bottom surfaces give, (Since, θ = 90^{°} ) But the side contributes nothing because the angle θ between and is 90^{°} for side surfaces. Thus, 2EA = Q_{enc}/ ε_{0 }= σA/ ε_{0} Or, = (σ/ 2ε_{0}) Here is a unit vector pointing away from the surface. ____________________________________________________________________________________________________ Problem 3:- Two infinite parallel planes carry equal but opposite uniform charge densities +σ and –σ in the side figure. Find the field in each of the three regions: (i) to the left both, (ii) in between them, (iii) to the right of both. Solution:- We observed that, the magnitude of electric field intensity of an infinite plane carries a uniform surface charge σ would be, E = (σ/ 2ε_{0}) Using this result, the left plate (positively charged) produces a field (1/2ε_{0})σ which points away from to the left region (i) and to the right region (ii) and (iii). The right plate (negatively charged) produces a field (1/2ε_{0})σ which points towards it (fig:2) to the right regions (i) and (ii) and to the left region (iii). Thus the electric field intensity in region (i) will be, E_{1} = σ/ 2ε_{0 }(-) + σ/ 2ε_{0}() E_{1} = 0 Thus the electric field intensity in region (iii) will be, E_{3} = σ/ 2ε_{0} () + σ/ 2ε_{0}(-) E_{3} = 0 Thus the electric field intensity in region (ii) will be, E_{3} = σ/ 2ε_{0} () + σ/ 2ε_{0}() E_{3} = σ/ ε_{0} () From the above observation, we conclude that, the two fields cancel in regions (i) and (iii). So the field intensity for regions (i) and (iii) is zero. The only region is (ii), where the magnitude of electric field intensity is σ/ ε_{0} and the direction points to the right, between the plates. Question 1:- Choose all of the following statements that are true about the electric flux. (i) The net flux through the whole cubic surface is zero. (ii) The magnitude of the flux through the top face of the cubic surface is 20 Nm^{2}/C. (iii) The magnitude of the net flux through the whole cubic surface is 20 Nm^{2}/C. (a) (i) only (b) (ii) only (c) (iii) only (d) (i) and (ii) only (e) (ii) and (iii) only Question 2:- A positive point charge q is placed off center inside an uncharged metal sphere insulated from the ground as shown. Where is the induced charge density greatest in magnitude and what is its sign? (a) A; negative. (b) A; positive. (c) B; negative. (d) B; positive (e) C; negative Question 3:- A point charge +Q is located on the x axis at x = a, and a second point charge –Q is located on the x axis at x = –a. A Gaussian surface with radius r = 2a is centered at the origin. The flux through this Gaussian surface is, (a) zero because the negative flux over one hemisphere is equal to the positive flux over the other. (b) greater than zero. (c) zero because at every point on the surface the electric field has no component perpendicular to the surface. (d) zero because the electric field is zero at every point on the surface. (e) none of the above Question 4:- An astronaut is in an all-metal chamber outside the space station when a solar storm results in the deposit of a large positive charge on the station. Which statement is correct? (a) The astronaut must abandon the chamber immediately to avoid being electrocuted. (b) The astronaut will be safe only if she is wearing a spacesuit made of non-conducting materials. (c) The astronaut does not need to worry: the charge will remain on the outside surface. (d) The astronaut must abandon the chamber if the electric field on the outside surface becomes greater than the breakdown field of air. (e)The astronaut must abandon the chamber immediately because the electric field inside the chamber is non-uniform. Question 5:- A uniform linear charge density of 4.0 nC/m is distributed along the entire x axis. Consider a spherical (radius = 5.0 cm) surface centered on the origin. Determine the electric flux through this surface. (a) 68 N.m^{2}/C (b) 62 N.m^{2}/C^{ }(c) 45 N.m^{2}/C (d) 79 N.m^{2}/C (e) 23 N.m^{2}/C Question 6:- A positive point charge q is placed at the center of an uncharged metal sphere insulated from the ground. The outside of the sphere is then grounded as shown. A is the inner surface and B is the outer surface. Which statement is correct? (a) The charge on A is –q; that on B is +q. (b) The charge on B is –q; that on A is +q. (c) The charge is -q/2 on A and on B. (d) There is no charge on either A or B. (e) The charge on A is –q; there is no charge on B.
To understand the Gauss law first we have to define the quantity Electric Flux.
The concept of electric ?ux involves a surface and the (vector) values of the electric ?eld at all points of the surface. To introduce the way that ?ux is calculated, we start with a simple case. We will consider a ?at surface of area a and an electric ?eld which is constant (that is, has the same vector value) over the surface.
The surface is characterized by the “area vector” a. This is a vector which points perpendicularly (normal) to the surface and has magnitude a. The surface and its area vector along with the uniform electric ?eld are shown in the side figure.
Actually, there’s a little problem here: There are really two choices for the vector a. (It could have been chosen to point in the opposite direction; it would still be normal to the surface and have the same magnitude.) However in every problem where we use electric ?ux, it will be made clear which choice is made for the “normal” direction.
In words, electric flux is equal to the number of electric field lines that pass through a particular surface multiplied by the area of the surface. Electric flux is denoted by the symbol ?_{E}.
The electric flux ?_{E} through a Gaussian surface is proportional to the net number of electric field lines passing through that surface.
So,
Now, for this simple case, the electric ?ux Φ is given by where theta is the angle between E and a. ?_{E }=Ea cosθ
Here θ is the angle between Electric field vector () and area vector ().
If is perpendicular to a fl at surface having a total area A, then the electric flux through this surface would be, ?_{E }=Ea. In this case, the flux is just the magnitude of the electric field multiplied by the area of the surface. Flux is a scalar, just an ordinary number; it is not a vector.
The electric flux ?_{E} through any closed surface is equal to the net charge inside the surface, Q inside, divided by ε_{0}:
?_{E}=Q_{enc}/ ε_{0}
Or,
= Q_{enc}/ ε_{0}
Though it’s not obvious, Gauss’s law describes how charges create electric fields. In principle, it can always be used to calculate the electric field of a system of charges or a continuous distribution of charge. In practice, the technique is useful only in a limited number of cases in which there is a high degree of symmetry, such as spheres, cylinders, or planes. With the symmetry of these special shapes, the charges can be surrounded by an imaginary surface, called a Gaussian surface. This imaginary surface is used strictly for mathematical calculation, and need not be an actual, physical surface.
(a) Recognize the principle:- To apply Gauss’s Law,you must first calculate the electric flux through a Gaussian surface. The choice of the Gaussian surface is key.
(b) Sketch the problem:- Your drawing should show the charge distribution. Use the symmetry of this distribution to also sketch the electric field. The Gaussian surface should match the symmetry of the electric field.
(c) Identify the relationships:- Your Gaussian surface should satisfy one or more of the following conditions:
(i) has constant magnitude over all or much of the surface and makes a constant angle with the surface. The most convenient surface is one that is perpendicular to at all (or most) points.
(ii) may be zero over a portion of the surface. The flux through that part of the surface is zero.
(iii) may be parallel to some part of the surface. The flux through that part of the surface is zero.
(d) Solve:- First calculate the total electric flux through the entire Gaussian surface. Then fi nd the total electric charge inside the surface and apply Gauss’s law to solve for .
The charge Q_{encl} is the net charge enclosed by the arbitrary close surface of our choice.
It does NOT matter where or how much charge is distributed inside the surface.
The charge outside the surface does not contribute.
Electric linked with a surface gives an idea of the number of electric lines of force passing through the surface.
Lines of force leaving a surface produce positive electric flux.
Lines of force entering a surface produce negative electric flux.
Lines of force parallel to the surface do not produce any electric flux.
The integral is over the value of E on a closed surface of our choice in any given situation
Problem 1:-
Find the field outside a charged solid sphere of radius R and total charge q.
Solution:-
Draw a spherical surface of radius r>R in the below figure. This is called Gaussian surface.
Gauss’s law says that for this surface,
Here, Q_{enc} =q
The direction of is along the radially outward which as the same area vector . So the angle θ between and is 0^{°}.
^{ }
(Since, cos0^{°} = 1)
The magnitude of is constant over the Gaussian surface, so it comes outside the integral.
= E (4πr^{2}) (Since, surface area da=4πr^{2})
As the total charge enclosed by Gaussian surface is q, therefore accordance to Gauss Theorem,
E (4πr^{2}) = q/ ε_{0}
So, = q/4π ε_{0}r^{2}
From the above observation we conclude that, the field outside the sphere is exactly the same as it would have been if all the charge had been concentrated at the center.
_______________________________________________________________________________________________
Problem 2:-
An infinite plane carries a uniform surface charge σ. Find its electric field.
To solve this problem, our first job is choose the Gaussian surface. Here the Gaussian surface is “pillbox”. Draw a Gaussian pill box and extends it to equal distances above and below the plane, which as shown in side figure.
In accordance to Gauss law,
In this case, Q_{enc} = σA. Here A is the area of the lid of the pillbox. By symmetry, points away from the plane (upward for points above, downward for points below). So the angle θ between and is 0^{°} for top and button surfaces and 90^{°} for side surfaces.
Thus, the top and bottom surfaces give,
(Since, θ = 90^{°} )
But the side contributes nothing because the angle θ between and is 90^{°} for side surfaces.
Thus, 2EA = Q_{enc}/ ε_{0 }= σA/ ε_{0}
Or, = (σ/ 2ε_{0})
Here is a unit vector pointing away from the surface.
____________________________________________________________________________________________________
Problem 3:-
Two infinite parallel planes carry equal but opposite uniform charge densities +σ and –σ in the side figure. Find the field in each of the three regions: (i) to the left both, (ii) in between them, (iii) to the right of both.
We observed that, the magnitude of electric field intensity of an infinite plane carries a uniform surface charge σ would be,
E = (σ/ 2ε_{0})
Using this result, the left plate (positively charged) produces a field (1/2ε_{0})σ which points away from to the left region (i) and to the right region (ii) and (iii).
The right plate (negatively charged) produces a field (1/2ε_{0})σ which points towards it (fig:2) to the right regions (i) and (ii) and to the left region (iii).
Thus the electric field intensity in region (i) will be,
E_{1} = σ/ 2ε_{0 }(-) + σ/ 2ε_{0}()
E_{1} = 0
Thus the electric field intensity in region (iii) will be,
E_{3} = σ/ 2ε_{0} () + σ/ 2ε_{0}(-)
E_{3} = 0
Thus the electric field intensity in region (ii) will be,
E_{3} = σ/ 2ε_{0} () + σ/ 2ε_{0}()
E_{3} = σ/ ε_{0} ()
From the above observation, we conclude that, the two fields cancel in regions (i) and (iii). So the field intensity for regions (i) and (iii) is zero. The only region is (ii), where the magnitude of electric field intensity is σ/ ε_{0} and the direction points to the right, between the plates.
Question 1:-
Choose all of the following statements that are true about the electric flux.
(i) The net flux through the whole cubic surface is zero.
(ii) The magnitude of the flux through the top face of the cubic surface is 20 Nm^{2}/C.
(iii) The magnitude of the net flux through the whole cubic surface is 20 Nm^{2}/C.
(a) (i) only (b) (ii) only (c) (iii) only (d) (i) and (ii) only (e) (ii) and (iii) only
Question 2:-
A positive point charge q is placed off center inside an uncharged metal sphere insulated from the ground as shown. Where is the induced charge density greatest in magnitude and what is its sign?
(a) A; negative.
(b) A; positive.
(c) B; negative.
(d) B; positive
(e) C; negative
Question 3:-
A point charge +Q is located on the x axis at x = a, and a second point charge –Q is located on the x axis at x = –a. A Gaussian surface with radius r = 2a is centered at the origin. The flux through this Gaussian surface is,
(a) zero because the negative flux over one hemisphere is equal to the positive flux over the other.
(b) greater than zero.
(c) zero because at every point on the surface the electric field has no component perpendicular to the surface.
(d) zero because the electric field is zero at every point on the surface.
(e) none of the above
Question 4:-
An astronaut is in an all-metal chamber outside the space station when a solar storm results in the deposit of a large positive charge on the station. Which statement is correct?
(a) The astronaut must abandon the chamber immediately to avoid being electrocuted.
(b) The astronaut will be safe only if she is wearing a spacesuit made of non-conducting materials.
(c) The astronaut does not need to worry: the charge will remain on the outside surface.
(d) The astronaut must abandon the chamber if the electric field on the outside surface becomes greater than the breakdown field of air.
(e)The astronaut must abandon the chamber immediately because the electric field inside the chamber is non-uniform.
Question 5:-
A uniform linear charge density of 4.0 nC/m is distributed along the entire x axis. Consider a spherical (radius = 5.0 cm) surface centered on the origin. Determine the electric flux through this surface.
(a) 68 N.m^{2}/C (b) 62 N.m^{2}/C^{ }(c) 45 N.m^{2}/C (d) 79 N.m^{2}/C (e) 23 N.m^{2}/C
Question 6:-
A positive point charge q is placed at the center of an uncharged metal sphere insulated from the ground. The outside of the sphere is then grounded as shown. A is the inner surface and B is the outer surface. Which statement is correct?
(a) The charge on A is –q; that on B is +q.
(b) The charge on B is –q; that on A is +q.
(c) The charge is -q/2 on A and on B.
(d) There is no charge on either A or B.
(e) The charge on A is –q; there is no charge on B.
You might like to refer Electric Field Intensity.
For getting an idea of the type of questions asked, refer the Previous Year Question Papers.
Click here to refer the most Useful Books of Physics.
To get answer to any question related to Gauss Theorem click here.
To read more, Buy study material of Electrostatics comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Physics here.
Signing up with Facebook allows you to connect with friends and classmates already using askIItians. It’s an easier way as well. “Relax, we won’t flood your facebook news feed!”
Post Question
Dear , Preparing for entrance exams? Register yourself for the free demo class from askiitians.
CAPACITORS Conductors Conductors are those...
The Parallel Plate Capacitor Table of Content...
Dielectrics and Polarisation Table of Content...
Conductors and Insulators Table of Content...
C ontinuous Charge Distribution Table of contents...
Capacitors and Capacitance Table of Content What...
Electric Flux Table of contents Introduction to...
DIPOLE The term electric dipole stands for two...
Coulomb’s Law Table of Content Introduction...
Electric Field Lines Table of Content Introduction...
Energy Stored in a Capacitor Consider a capacitor...
Basic Properties of Electric Charge Table of...
Applications of Gauss’s Law Table of...
Introduction of Electrostatic Potential and...
Electric Dipole Table of contents Electric Dipole...
Dipole in Uniform External Field Table of contents...
Forces between Multiple Charges Table of Content...
Electric Field Table of Content Introduction to...
Gauss’s Law Table of contents Gauss’s...
Electric Potential The electric potential is a...
Effect of Dielectric on Capacitance Table of...