MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: R

There are no items in this cart.
Continue Shopping
Menu
Get instant 20% OFF on Online Material.
coupon code: MOB20 | View Course list

Get extra R 1,600 off
USE CODE: askschfd09

21:       Area bounded by y = g(x), x-axis and the lines x = -2, x = 3, where

                          1629_equation.JPG

                       and f(x) = x2 -  , is equal to

                        (A)  113/24 sq.units                       (B)         111/24 sq.units

                        (C)  117/24 sq.units                       (D)         121/24 sq,units

2113_bounded area.JPG

22:                  Area of the region which consists of all the points satisfying the conditions |x–y| + |x+y| < 8 and xy > 2, is equal to

                        (A)      4(7 – ln8)sq. units               (B)      4(9 – ln8)sq. units  

                        (C)      2(7 – ln8)sq. units               (D)      2(9 – ln8)sq. units

Solution:       The expression |x–y| + |x+y| < 8, represents the interior region of the square formed by the lines x = ± 4, y = ± 4 and xy > 2. represents the region lying inside the hyperbola xy =2

                                                    672_Required area.JPG

                        Required area

                       302_equation.JPG

                      = 4(7–3 In2) sq.units

                     = 4(7 – In8) sq.units

23:                  Area bounded by the parabola (y - 2)2 = x – 1, the tangent to it at the point P (2, 3) and the x-axis is equal to

                        (A)      9 sq. units                             (B)      6 sq. units

                        (C)      3 sq. units                             (D)      None of these

Solution:       (y - 2)2 = (x - 1) => 2(y - 2).  = 1

                                 1912_parabola.JPG

                        => dy/dx = 1/2(y–2)

                        Thus equation of tangent at P(2, 3) is,

                        (y – 3) = 1/2 (x–2) i.e., x = 2y – 4

                        Required area 243_equation.JPG

                        = ((y–2)3/3 – y2 + 5y)30 = 9 sq. units

24:                  Two lines draw through the point P(4, 0) divide the area bounded by the curves y = √2 πx/4 and x – axis, between the linea x = 2, and x = 4, in to three equal parts. Sum of the slopes of the drawn lines is equal to

                        (A) –2 2/π                                     (B)      √2/π

                        (C) –√2/π                                     (D)      –4√2/π

Solution:       Area bounded by y = √2 .sin πx/4 and x-axis between the lines x = 2 and x = 4,

                                    446_equation.JPG

                      Let the drawn lines are L1: y – m1(x - 4) = 0 and L2: y – m2(x - 4) = 0, meeting the line x = 2 at the points A and B respectively Clearly A = (2, - 2m1); B= (2, -2m2)

 2491_equation.JPG

 25:                  If A = 2020_equation.JPG is equal to

                        (A)   1/π+2 – A                               (B)      1/2 + 1/π+2 – A

                        (C)   1/2 – 1/π+2 – A                     (D)      1/2 + 1/π+2 + A 

1960_equation.JPG

26.                   The value of the integral 1803_equation.JPG is

                        (A) 1                                                                         (B) π/12

                        (C) π/6                                                                     (D) none of these  

Solution:       Using the property 1290_equation.JPG f (a + b – x) dx, the given integral 

1337_equation.JPG

                        Hence (B) is the correct answer.

27.                   If I =  155_equation.JPG dx then

                        (A) 0                                                               (B) 2  

                        (C)  π/2                                                         (D) 2 – π/2

2314_equation.JPG

                        Hence (D) is the correct answer.

28.                   If I = 1509_integers.JPG , then

                        (A) 0 < I < 1                                                   (B) I > π/2

                        (C) I < √2π                                                     (D) I > 2 π

Solution:       Since x ∈ [0, π/2]  => 1 < 1 + sin3 x < 2

1484_equation.JPG

                        Hence (C) is the correct answer.

29.                   If f (a + b –x) = f (x) then ba x f (x) dx is equal to

                        (A) a–b/2 ba f(x) dx                                    (B) (a+b/2) ba f(x) d x           

                        (C) 0                                                              (D) none of these

Solution:        I = ba x f (x) dx = ba (a+b-x) f (a +b-x) dx

                        = (a + b) ba  f(a +b –x) - ba x f (a + b –x) dx 

                        = ( a + b) ba f (x) dx - ba x f (x) d x

                        Hence I = (a+b/2) ba f(x) dx.

                        Hence (B) is the correct answer.

To read more, Buy study materials of Definite integral comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Mathematics here.

  • Complete JEE Main/Advanced Course and Test Series
  • OFFERED PRICE: R 15,000
  • View Details
Get extra R 15,000 off
USE CODE: askschfd09