Salt Hydrolysis:

Pure water is a weak electrolyte and neutral in nature, i.e., Hion concentration is exactly equal to OH" ion concentration

[H+] = [OH-]

When this condition is disturbed by decreasing the concentration of either of the two ions, the neutral nature changes into acidic or basic. When [H+] > [OH-], the water becomes acidic and when [H+] < [OH-], the water acquires basic nature. This is exactly the change which occurs during the phenomenon known as salt hydrolysis. It is defined as a reaction in which the cation or anion or both of a salt react with water to produce acidity or alkalinity.

Salts are strong electrolytes. When dissolved in water, they dissociate almost completely into ions. In some salts, cations are more reactive in comparison to anions and these react with water to produce H+ ions. Thus, the solution acquires acidic nature.

M+ +   H2O  ↔  MOH    +  H+

                     Weak base

In other salts, anions may be more reactive in comparison to cations and these react with water to produce OH- ions. Thus, the solution becomes basic.

  A- +   H2O  ↔   HA   +  OH-

                      Weak acid

The process of salt hydrolysis is actually the reverse of neutralization.

Salt + Water ↔  Acid + Base

If acid is stronger than base, the solution is acidic and in case base is stronger than acid, the solution is alkaline. When both the acid and the base are either strong or weak, the solution is generally neutral in nature.

As the nature of the cation or the anion of the salt determines whether its solution will be acidic or basic, it is proper to divide the salts into four categories.

(i)   Salt of a strong acid and a weak base.

Examples:  FeCl3, CuCl2, AlCl3, NH4Cl, CuSO4, etc.

(ii)  Salt of a strong base and a weak acid.

Examples: CH3COONa, NaCN, NaHCO3, Na2CO3, etc.

(iii)  Salt of a weak acid and a weak base.

Examples: CH3COONH4, (NH4)2CO3, NH4HCO3, etc.

(iv)  Salt of a strong acid and a strong base.

Examples: NaCl, K2SO4, NaNO3, NaBr, etc.

Related Resources
Relative Strength of Acids and Bases

Relative Strength of Acids and Bases: According to...

Salt of Strong Acid and Weak Base

Salt of a strong acid and a weak base: The...

Solubility Product

SOLUBILITY PRODUCT: If to a given amount of...

Hydrolysis of Amphiprotic Anion

Hydrolysis of Amphiprotic Anion: Let us consider...

Salt of Weak Acid and Weak Base

Salt of a weak acid and a weak base: Maximum...

Salt of Weak acid and Strong Base

Salt of a Weak Acid and a Strong Base: The...

Common ION Effect

COMMON ION EFFECT: Let AB to the weak electrolyte....

Acids and Bases

Acids and Bases: The earliest criteria for the...

Periodic Variations of Acidic and Basic Properties

Periodic variations of acidic and basic...

Buffer Capacity

Buffer capacity: The property of buffer solution...

pH OF Weak Acids and Bases

pH OF Weak Acids and Bases: Weak acids and bases...

Buffer Solutions

BUFFER SOLUTIONS: For several purposes, we need...

Relationship-Solubility and Solubility Product

Relationship between solubility and solubility...

Types of Electrolytes

Types of Electrolytes: The compounds which give...

Theory of Indicators

Ionic Equilibrium THEORY OF INDICATORS: An...

Ostwald s Dilution Law

Ostwald’s Dilution Law: According to...

Lewis Concept of Acids and Bases

Lewis Concept of Acids and Bases: This concept was...

Hendersons Equation

Henderson's Equation (pH of a buffer): (i) Acidic...

Acid-Base Neutralization

ACID-BASE NEUTRALISATION-SALTS When aqueous...

Hydrogen Ion Concentration pH Scale

HYDROGEN ION CONCENTRATION-pH SCALE: It is clear...

Applications of Solubility Product

Applications of Solubility Product (i)...

Ionic Product of Water

Ionic Product of Water: Pure water is a very weak...