MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: R

There are no items in this cart.
Continue Shopping
Menu
Get instant 20% OFF on Online Material.
coupon code: MOB20 | View Course list

  • Complete JEE Main/Advanced Course and Test Series
  • OFFERED PRICE: R 15,000
  • View Details
Get extra R 3,000 off
USE CODE: MOB20

IIT JEE 2009 Mathematics Paper2 Code 1 Solutions

14.    The smallest value of k, for which both the roots of the equation x2 - 8kx + 16(k2 - k + 1) = 0 are real, distinct and have values at least 4, is

Sol.   2

         smallst root

        x2 - 8kx + 16 (k2 - k + 1) = 0

        Since , D > 0 => k > 1                                  ...... (1)

        Also -b/2a > 4 => 8k/2 > 4

        =>    k > 1                                             ...... (2)

       Also f(4) > 0 Þ 16 - 32 k + 16 (k2 - k + 1) > 0

       k2 - 3k + 2 > 0

       k < 1 υ k > 2                                     ...... (3)

       From equations (1), (2) and (3)

       kmin = 2

15.    The maximum value of the function f(x) = 2x3 - 15x2 + 36x - 48 on the set A = {x|x2 + 20 < 9x|} is

Sol.   7

        We have ,

        f'(x) = 6(x - 2)(x - 3)

        so f(x) is increasing in (3, ∞)

        Also, A = {4 < x < 5}

        fmax = f(5) = 7.

16.    Let ABC and ABC' be two non-congruent triangles with sides AB = 4, AC = AC' = 2√2 and angle B = 30o. The absolute value of the areas of these triangles is

Sol.   4

        cosβ = (a2+16-8)/(2×a×4)

                 triangle

        => √3/2=(a2+8)/8a

        => a2 - 4√3 a + 8 = 0

        => a1 + a2 = 4√3, a1a2 = 0

        => |a1 - a2| = 4

        => |Δ1 - Δ2| = 1/2 × 4 sin 30o × 4 = 4.

 

17.    If the function f(x) = x3 + ex/2 and g(x) = f-1(x), then the value of f'(1) is

Sol.   2

        f(0) = 1, f'(x) = 3x2 + 1/2 ex/2

        => f'(g(x)) g'(x) = 1

         Put x = 0 => g'(1) = 1/f'(0) = 2.

 

<< Back || Next »

  • Complete JEE Main/Advanced Course and Test Series
  • OFFERED PRICE: R 15,000
  • View Details
Get extra R 3,000 off
USE CODE: MOB20