Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

A thin spherical shell of radius R has a fixed charge +q distributed uniformly over its surface.Now the sphere's angular velocity increases linearly with time w = w0 + kt.The line integral of the electric field (∫E.dl ) around the circular path P located at the centre of the sphere is (Assume that the normal to the plane containing the path is along the +z axis and that the radius rp

A thin spherical shell of radius R has a fixed charge +q distributed uniformly over its surface.Now the sphere's angular velocity increases linearly with
time w = w0 + kt.The line integral of the electric field (∫E.dl ) around the circular path P located at the centre of the sphere is (Assume that the normal to the plane containing the path is along the +z axis and that the radius
rp

Question Image
Grade:12th Pass

1 Answers

Arun
25763 Points
one year ago
Gauss's Law :   Er.dS=ϵoqenclosed
As the charge lies on the surface of shell, thus no charge is enclosed by the Gaussian surface lying inside shell. Hence from Gauss's law, net electric field inside the shell is zero.
   Er=0   for  rR
Outside the shell :  rR
Charge enclosed by the Gaussian surface  qenclosed=Q
From Gauss's law  ErdS=ϵoqenclosed
We get  Er×4πr2=ϵoQ
Electric field at a point outside the shell  Er=4πϵor2Q  for rR
Thus electric field decreases as r21

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free