can you pls explain the working of P-N-P transister?

can you pls explain the working of P-N-P transister?


1 Answers

AKASH GOYAL AskiitiansExpert-IITD
420 Points
12 years ago

Dear Aditya

PNP Transistor Operation

The PNP transistor works essentially the same as the NPN transistor. However, since the emitter, base, and collector in the PNP transistor are made of materials that are different from those used in the NPN transistor, different current carriers flow in the PNP unit. The majority current carriers in the PNP transistor are holes. This is in contrast to the NPN transistor where the majority current carriers are electrons. To support this different type of current (hole flow), the bias batteries are reversed for the PNP transistor. A typical bias setup for the PNP transistor is shown in figure .

 The first letter (P) in the PNP sequence indicates the polarity of the voltage required for the emitter (positive), and the second letter (N) indicates the polarity of the base voltage ( negative). Since the base-collector junction is always reverse biased, then the opposite polarity voltage (negative) must be used for the collector. Thus, the base of the PNP transistor must be negative with respect to the emitter, and the collector must be more negative than the base. Remember, just as in the case of the NPN transistor, this difference in supply voltage is necessary to have current flow (hole flow in the case of the PNP transistor) from the emitter to the collector. Although hole flow is the predominant type of current flow in the PNP transistor, hole flow only takes place within the transistor itself, while electrons flow in the external circuit. However, it is the internal hole flow that leads to electron flow in the external wires connected to the transistor.

Figure. - A properly biased PNP transistor.

PNP FORWARD-BIASED JUNCTION. - Now let us consider what happens when the emitter-base junction in figure  is forward biased. With the bias setup shown, the positive terminal of the battery repels the emitter holes toward the base, while the negative terminal drives the base electrons toward the emitter. When an emitter hole and a base electron meet, they combine. For each electron that combines with a hole, another electron leaves the negative terminal of the battery, and enters the base. At the same time, an electron leaves the emitter, creating a new hole, and enters the positive terminal of the battery. This movement of electrons into the base and out of the emitter constitutes base current flow (IB), and the path these electrons take is referred to as the emitter-base circuit.

Figure  - The forward-biased junction in a PNP transistor.

PNP REVERSE-BIASED JUNCTION. - In the reverse-biased junction ), the negative voltage on the collector and the positive voltage on the base block the majority current carriers from crossing the junction.

However, this same negative collector voltage acts as forward bias for the minority current holes in the base, which cross the junction and enter the collector. The minority current electrons in the collector also sense forward bias-the positive base voltage-and move into the base. The holes in the collector are filled by electrons that flow from the negative terminal of the battery. At the same time the electrons leave the negative terminal of the battery, other electrons in the base break their covalent bonds and enter the positive terminal of the battery. Although there is only minority current flow in the reverse-biased junction, it is still very small because of the limited number of minority current carriers.

Figure  - The reverse-biased junction in a PNP transistor.

All the best.




Please feel free to post as many doubts on our discussion forum as you can. We are all IITians and here to help you in your IIT JEE preparation.

Win exciting gifts by answering the questions on Discussion Forum. So help discuss any query on askiitians forum and become an Elite Expert League askiitian.

Now you score 5+15 POINTS by uploading your Pic and Downloading the Askiitians Toolbar  respectively : Click here to download the toolbar..


Think You Can Provide A Better Answer ?