Flag Vectors> FORMULA...
question mark

all (A to Z) formula of vector for class 11

shubham prasad , 12 Years ago
Grade
anser 4 Answers
Aman Bansal

Last Activity: 12 Years ago

Dear Shubham,

The formula for the length of a 2D vector is the Pythagorean Formula. Say that the vector is represented by   (x, y)T.   Put the vector with its tail at the origin. Now make a triangle by drawing the two sides:

side_1   =  (x, 0)T

side_2   = (0, y)T.

The length of side_1 is x, and the length of side_2 is y, so:

length (x, y)T   =    ( x2 + y2 )

In this formula,    means the positive square root. We don''t (of course) want the length to be negative.

Cracking IIT just got more exciting,It s not just all about getting assistance from IITians, alongside Target Achievement and Rewards play an important role. ASKIITIANS has it all for you, wherein you get assistance only from IITians for your preparation and win by answering queries in the discussion forums. Reward points 5 + 15 for all those who upload their pic and download the ASKIITIANS Toolbar, just a simple  to download the toolbar….

So start the brain storming…. become a leader with Elite Expert League ASKIITIANS

Thanks

Aman Bansal

Askiitian Expert

 

Aman Bansal

Last Activity: 12 Years ago

Dear Shubham,

 vector quantity has both magnitude and direction. Acceleration, velocity, force and displacement are all examples of vector quantities. A scalar quantity is has only magnitude (so the direction is not important). Examples include speed, time and distance.

Unit Vectors

A unit vector is a vector which has a magnitude of 1. There are three important unit vectors which are commonly used and these are the vectors in the direction of the x, y and z-axes. The unit vector in the direction of the x-axis is i, the unit vector in the direction of the y-axis is j and the unit vector in the direction of the z-axis is k.

Writing vectors in this form can make working with vectors easier.

The Magnitude of a Vector

The magnitude of a vector can be found using Pythagoras''s theorem.

  • The magnitude of ai + bj = √(a2 + b2)

We denote the magnitude of the vector a by | a |

Position Vectors

Position vectors are vectors giving the position of a point, relative to a fixed point (the origin).

For example, the points A, B and C are the vertices of a triangle, with position vectors ab and c respectively:

You can draw in the origin wherever you want. 

Notice that  = - a + b = b - a because you can get from A to B by going from A to O and then going from O to B.

Cracking IIT just got more exciting,It s not just all about getting assistance from IITians, alongside Target Achievement and Rewards play an important role. ASKIITIANS has it all for you, wherein you get assistance only from IITians for your preparation and win by answering queries in the discussion forums. Reward points 5 + 15 for all those who upload their pic and download the ASKIITIANS Toolbar, just a simple  to download the toolbar….

So start the brain storming…. become a leader with Elite Expert League ASKIITIANS

Thanks

Aman Bansal

Askiitian Expert

 

Sorabh Gulia

Last Activity: 7 Years ago

Vector Formulas

A vector can also be defined as an element of a vector space.  Vectors are sometimes referred to by the number of coordinates they have, so a 2-dimensional vector  is often called a two-vector, an n-dimensional vector is often called an n-vector, and so on.

The important formulas of vectors are given below:

 

1. The position vector of any point p(x,y) is

op = \dbinom{x}{y} or OP = ( x,y ).

 

2.The magnitude of position vector
OP = \sqrt{x^2 + y^2} and direction \tan \theta = \dfrac{y}{x}

 

3. The unit vector = \dbinom{1}{0} where the magnitude of unit vector is 1

Or,the unit vector = \dfrac{vector}{its modulus} = \dfrac{ \overrightarrow{a}}{ |\overrightarrow{a}| }

 

4.The two vectors \overrightarrow{a} and \overrightarrow{b} are parallel if \overrightarrow{a} = k \overrightarrow{b} and \overrightarrow{b} = m \overrightarrow{a} where k and m are the scalars.

 

5.If \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} then \overrightarrow{AC} is the result vector which is the triangle law of vector addition.

 

6. The scalar or dot product of any two vectors \overrightarrow{a} . \overrightarrow{b} = | \overrightarrow{a} | | \overrightarrow{b} | cos\theta.

 

7. The angle between two vectors is  \cos \theta = \dfrac{\overrightarrow{a} . \overrightarrow{b}} {| \overrightarrow{a} | | \overrightarrow{b} |}

 

8. \overrightarrow{a} = x_1 i + y_1 j and \overrightarrow{b} = x_2 i + y_2 j , then :
\overrightarrow{a} . \overrightarrow{b} = x_1 . x_2 + y_1 . y_2 where i.j = j.1 = 0

 

9. If the position vector of A is \overrightarrow{a} , position vector of point B is \overrightarrow{b} and position vector of mid-point M is m then \overrightarrow{m} = \dfrac{\overrightarrow{a} + \overrightarrow{b}}{2}

 

10. If the point P divides Ab internally in the ratio m:n then position vector of P is given by \overrightarrow{p} = \dfrac{n \overrightarrow{a} + m \overrightarrow{b}}{m + n} which is a section formula.

 

11.If P divides AB externally in the ratio m:n then \overrightarrow{p} = \dfrac{m \overrightarrow{b} - n \overrightarrow{a}}{m - n}

PRODUCT OF TWO VECTORS

 

1.Scalar Product ( dot product )

 

Let \overrightarrow{a} = (a_1,a_2) , \overrightarrow{b} = (b_1,b_2) then dot product of \overrightarrow{a} & \overrightarrow{b} is devoted by \overrightarrow{a}.\overrightarrow{b} read as \overrightarrow{a} dot \overrightarrow{b} and defined by \overrightarrow{a}.\overrightarrow{b} = a_1 b_1 , a_2 b_2

 

Note:

if\overrightarrow{a} = (a_1,a_2,a_3),\overrightarrow{b} = (b_1,b_2,b_3) \\ \overrightarrow{a} . \overrightarrow{b} = a_1b_1 + a_2b_2 +a_3b_3

 

OR

 

The scalar product of \overrightarrow{a} & \overrightarrow{b} is devoted by \overrightarrow{a} . \overrightarrow{b} ,
\overrightarrow{a} . \overrightarrow{b} |\overrightarrow{a}|.|\overrightarrow{b}| \cos \theta  where \theta being  angle between \overrightarrow{a} & \overrightarrow{b}

 

Note:1

\cos \theta = \dfrac{\overrightarrow{a} . \overrightarrow{b}}{| \overrightarrow{a} | | \overrightarrow{b} |}
Note:2

\overrightarrow{a} & \overrightarrow{b} are perpendicular if \theta = 90^o
i.e \overrightarrow{a} . \overrightarrow{b} |\overrightarrow{a}|.|\overrightarrow{b}| \cos 90^o  or \overrightarrow{a} . \overrightarrow{b} = 0

 

2.Properties of Scalar Product
i. \overrightarrow{a} . \overrightarrow{b} = \overrightarrow{b} . \overrightarrow{a}.
ii. m \overrightarrow{a} . n \overrightarrow{b} - mn \overrightarrow{a}. \overrightarrow{b} = \overrightarrow{a} mn \overrightarrow{b}.
iii. \overrightarrow{a}( \overrightarrow{b} + \overrightarrow{c} ) = \overrightarrow{a} . \overrightarrow{c}
iv. ( \overrightarrow{b} + \overrightarrow{c} )^2 = \overrightarrow{a}^2 + 2.\overrightarrow{a}.\overrightarrow{b} + \overrightarrow{b}^2
v. If \overrightarrow{i} = (1,0,0): \overrightarrow{j} = (0,1,0), \overrightarrow{k} = (0,0,1)then \overrightarrow{i} . \overrightarrow{j} = \overrightarrow{j} . \overrightarrow{k} = \overrightarrow{k} . \overrightarrow{i} = \overrightarrow{i} . \overrightarrow{k} = \overrightarrow{j} . \overrightarrow{k} = 0

 

3.Vector (cross) Product of two vectors.
Let \overrightarrow{a} = (a_1 , a_2 , a_3 ), \overrightarrow{b} = (b_1 , b_2 , b_3 ) be two vectors then the cross product of \overrightarrow{a} \times \overrightarrow{b}is devoted by\overrightarrow{a} \times \overrightarrow{b} and defined by

\overrightarrow{a} \times \overrightarrow{b} = (a_1 , a_2 , a_3 ) \times (b_1 , b_2 , b_3 )

 

 = \begin{pmatrix} a_1 & a_2 & a_3 & a_1 & a_2 \\ b_1 & b_2 & b_3 & b_1 & b_2 \end{pmatrix} = ( a_2 b_3 - a_3 b_2 , a_3 b_1 - a_1 b_2 - a_2 b_1 )

 

We can define in terms of determinants as follows

 

\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}

 

= ( a_2 b_3 - a_3 b_2 ) \overrightarrow{i} + ( a_3 b_1 - a_1 b_3 ) \overrightarrow{j} + ( a_1 b_2 - a_2 b_1 ) \overrightarrow{k}

Note:1               | \overrightarrow{a} \times \overrightarrow{b} | = | \overrightarrow{a} | \times | \overrightarrow{b} | \sin \theta , \theta being angle between
\overrightarrow{a} & \overrightarrow{b}
Note:2               \dfrac{| \overrightarrow{a} \times \overrightarrow{b}| }{| \overrightarrow{a} | | \overrightarrow{b} | \sin \theta }
Note:3               If \theta = 0 , the | \overrightarrow{a} \times \overrightarrow{b} | = 0 i.e \overrightarrow{a} \times \overrightarrow{b} = 0 and \overrightarrow{a} & \overrightarrow{b} are parallel if \overrightarrow{a} \times \overrightarrow{b} = 0.

 

4. Properties of cross product

 

i. \overrightarrow{a} \times \overrightarrow{b} = 0
ii. \overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{a}
iii. \overrightarrow{a} \times ( \overrightarrow{b} + \overrightarrow{c} ) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}
iv. ( n \overrightarrow{a} ) \times \overrightarrow{b} = n( \overrightarrow{a} \times \overrightarrow{b} ) \times n \overrightarrow{b}
v. \overrightarrow{a} \times \overrightarrow{b} is perpendicular to both \overrightarrow{a} and \overrightarrow{b}
vi. | \overrightarrow{a} \times \overrightarrow{b} | is a Area of paralelogram with sides  \overrightarrow{a} and  \overrightarrow{b}
vii. \dfrac{1}{2} | \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} | = area of triangle having \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} as position vectors of vertices of a triangle.

Ajeet Tiwari

Last Activity: 4 Years ago

hello students
642-918_vector upload.jpg

hope it helps
thankyou

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...