Last Activity: 7 Years ago
3(sin x – cos x)4 + 6(sin x + cos x)2 + 4(sin6 x + cos6 x)
= 3 [(sin x – cos x)2]2 + 6(sin2x + cos2x + 2 sin x cos x) + 4 [(sin2x)3 + (cos2x)3]
= 3 [sin2x + cos2x – 2 sin x cos x]2 + 6(1 + 2 sin x cos x) + 4 [(sin2x + cos2x) (sin4x + cos4x – sin2x cos2x)]
= 3 [1 – 2 sin x cosx)2 + 6 + 12 sin x cos x + 4 [(sin2x)2 + (cos2 x)2 + 2 sin2x cos2x – 3 sin2 x cos2x]
[ using: sin 2 x + cos 2 x = 1]
= 3 [1 + 4 sin2x cos2x – 4 sin x cos x)] + 6 + 12 sin x cos x + 4 [(sin2x + cos x)2 – 3 sin2x cos2x]
= 3 + 12 sin2 x cos2x – 12 sin x cos x + 6 + 12 sin x cos x + 4 – 12 sin2x cos2x
= 13, which is independent of x.
Regards
Arun (askIITians forum expert)
Last Activity: 2 Years ago
3(sin x – cos x)4 + 6(sin x + cos x)2 + 4(sin6 x + cos6 x)
= 3 [(sin x – cos x)2]2 + 6(sin2x + cos2x + 2 sin x cos x) + 4 [(sin2x)3 + (cos2x)3]
= 3 [sin2x + cos2x – 2 sin x cos x]2 + 6(1 + 2 sin x cos x) + 4 [(sin2x + cos2x) (sin4x + cos4x – sin2x cos2x)]
= 3 [1 – 2 sin x cosx)2 + 6 + 12 sin x cos x + 4 [(sin2x)2 + (cos2 x)2 + 2 sin2x cos2x – 3 sin2 x cos2x]
[ using: sin 2 x + cos 2 x = 1]
= 3 [1 + 4 sin2x cos2x – 4 sin x cos x)] + 6 + 12 sin x cos x + 4 [(sin x + cos x)2 – 3 sin2x cos2x]
= 3 + 12 sin2 x cos2x – 12 sin x cos x + 6 + 12 sin x cos x + 4 – 12 sin2x cos2x
= 13, which is independent of x.
Prepraring for the competition made easy just by live online class.
Full Live Access
Study Material
Live Doubts Solving
Daily Class Assignments
Get your questions answered by the expert for free
Last Activity: 2 Years ago
Last Activity: 2 Years ago
Last Activity: 2 Years ago
Last Activity: 2 Years ago
Last Activity: 2 Years ago