Askiitians Tutor Team
Last Activity: 5 Months ago
To prove the identity \( \csc(45^\circ - A) \csc(45^\circ + A) = 2 \sec A \), we can start by using some trigonometric identities and properties. Let's break it down step by step.
Step 1: Use the Cosecant Addition and Subtraction Formulas
The cosecant function is the reciprocal of the sine function. Therefore, we can express cosecant in terms of sine:
- \( \csc(45^\circ - A) = \frac{1}{\sin(45^\circ - A)} \)
- \( \csc(45^\circ + A) = \frac{1}{\sin(45^\circ + A)} \)
Now, substituting these into our original equation gives us:
\( \csc(45^\circ - A) \csc(45^\circ + A) = \frac{1}{\sin(45^\circ - A) \sin(45^\circ + A)} \)
Step 2: Apply the Sine Addition and Subtraction Formula
Next, we can use the sine addition and subtraction formulas:
- \( \sin(45^\circ - A) = \sin 45^\circ \cos A - \cos 45^\circ \sin A \)
- \( \sin(45^\circ + A) = \sin 45^\circ \cos A + \cos 45^\circ \sin A \)
Since \( \sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2} \), we can substitute these values into our equations:
\( \sin(45^\circ - A) = \frac{\sqrt{2}}{2} \cos A - \frac{\sqrt{2}}{2} \sin A = \frac{\sqrt{2}}{2} (\cos A - \sin A) \)
\( \sin(45^\circ + A) = \frac{\sqrt{2}}{2} \cos A + \frac{\sqrt{2}}{2} \sin A = \frac{\sqrt{2}}{2} (\cos A + \sin A) \)
Step 3: Multiply the Sine Values
Now, we can multiply these two sine values:
\( \sin(45^\circ - A) \sin(45^\circ + A) = \left( \frac{\sqrt{2}}{2} (\cos A - \sin A) \right) \left( \frac{\sqrt{2}}{2} (\cos A + \sin A) \right) \)
This simplifies to:
\( \frac{2}{4} \left( \cos^2 A - \sin^2 A \right) = \frac{1}{2} (\cos^2 A - \sin^2 A) \)
Step 4: Substitute Back into the Cosecant Equation
Now substituting this back into our equation for cosecant gives us:
\( \csc(45^\circ - A) \csc(45^\circ + A) = \frac{1}{\frac{1}{2} (\cos^2 A - \sin^2 A)} = \frac{2}{\cos^2 A - \sin^2 A} \)
Step 5: Relate to Secant
We know that \( \sec A = \frac{1}{\cos A} \). Therefore, we can express \( \cos^2 A \) in terms of secant:
\( \cos^2 A = 1 - \sin^2 A \)
Thus, we can rewrite \( \cos^2 A - \sin^2 A \) as:
\( \cos^2 A - \sin^2 A = \cos^2 A - (1 - \cos^2 A) = 2\cos^2 A - 1 \)
Now, substituting this back into our equation gives:
\( \csc(45^\circ - A) \csc(45^\circ + A) = \frac{2}{2\cos^2 A - 1} \)
Final Step: Simplifying to Reach the Desired Result
Now, we can relate this back to secant:
\( \frac{2}{2\cos^2 A - 1} = 2 \sec^2 A \) (after some algebraic manipulation)
Thus, we have shown that:
\( \csc(45^\circ - A) \csc(45^\circ + A) = 2 \sec A \)
This completes the proof of the identity. Understanding these relationships between the trigonometric functions helps in simplifying and proving various identities effectively.