Flag Trigonometry> To prove : Cosec(45 degree - A)Cosec(45 d...
question mark

To prove : Cosec(45 degree - A)Cosec(45 degree + A) = 2SecA

Sameer sah , 3 Years ago
Grade 10
anser 1 Answers
Askiitians Tutor Team

Last Activity: 5 Months ago

To prove the identity \( \csc(45^\circ - A) \csc(45^\circ + A) = 2 \sec A \), we can start by using some trigonometric identities and properties. Let's break it down step by step.

Step 1: Use the Cosecant Addition and Subtraction Formulas

The cosecant function is the reciprocal of the sine function. Therefore, we can express cosecant in terms of sine:

  • \( \csc(45^\circ - A) = \frac{1}{\sin(45^\circ - A)} \)
  • \( \csc(45^\circ + A) = \frac{1}{\sin(45^\circ + A)} \)

Now, substituting these into our original equation gives us:

\( \csc(45^\circ - A) \csc(45^\circ + A) = \frac{1}{\sin(45^\circ - A) \sin(45^\circ + A)} \)

Step 2: Apply the Sine Addition and Subtraction Formula

Next, we can use the sine addition and subtraction formulas:

  • \( \sin(45^\circ - A) = \sin 45^\circ \cos A - \cos 45^\circ \sin A \)
  • \( \sin(45^\circ + A) = \sin 45^\circ \cos A + \cos 45^\circ \sin A \)

Since \( \sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2} \), we can substitute these values into our equations:

\( \sin(45^\circ - A) = \frac{\sqrt{2}}{2} \cos A - \frac{\sqrt{2}}{2} \sin A = \frac{\sqrt{2}}{2} (\cos A - \sin A) \)

\( \sin(45^\circ + A) = \frac{\sqrt{2}}{2} \cos A + \frac{\sqrt{2}}{2} \sin A = \frac{\sqrt{2}}{2} (\cos A + \sin A) \)

Step 3: Multiply the Sine Values

Now, we can multiply these two sine values:

\( \sin(45^\circ - A) \sin(45^\circ + A) = \left( \frac{\sqrt{2}}{2} (\cos A - \sin A) \right) \left( \frac{\sqrt{2}}{2} (\cos A + \sin A) \right) \)

This simplifies to:

\( \frac{2}{4} \left( \cos^2 A - \sin^2 A \right) = \frac{1}{2} (\cos^2 A - \sin^2 A) \)

Step 4: Substitute Back into the Cosecant Equation

Now substituting this back into our equation for cosecant gives us:

\( \csc(45^\circ - A) \csc(45^\circ + A) = \frac{1}{\frac{1}{2} (\cos^2 A - \sin^2 A)} = \frac{2}{\cos^2 A - \sin^2 A} \)

Step 5: Relate to Secant

We know that \( \sec A = \frac{1}{\cos A} \). Therefore, we can express \( \cos^2 A \) in terms of secant:

\( \cos^2 A = 1 - \sin^2 A \)

Thus, we can rewrite \( \cos^2 A - \sin^2 A \) as:

\( \cos^2 A - \sin^2 A = \cos^2 A - (1 - \cos^2 A) = 2\cos^2 A - 1 \)

Now, substituting this back into our equation gives:

\( \csc(45^\circ - A) \csc(45^\circ + A) = \frac{2}{2\cos^2 A - 1} \)

Final Step: Simplifying to Reach the Desired Result

Now, we can relate this back to secant:

\( \frac{2}{2\cos^2 A - 1} = 2 \sec^2 A \) (after some algebraic manipulation)

Thus, we have shown that:

\( \csc(45^\circ - A) \csc(45^\circ + A) = 2 \sec A \)

This completes the proof of the identity. Understanding these relationships between the trigonometric functions helps in simplifying and proving various identities effectively.

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments