Flag Trigonometry> thnx +tan3x=2tan2x find general solution....
question mark

thnx +tan3x=2tan2x find general solution. Please give me ans.Please give me ans

Pradeep Gupta , 4 Years ago
Grade 12th pass
anser 2 Answers
Vikas TU

Last Activity: 4 Years ago

tan x + tan 2x = tan 3x
Now let us simplify, tan x + tan 2x = tan 3x
tan x + tan 2x – tan 3x = 0
tan x + tan 2x – tan (x + 2x) = 0
On using the formula, tan (A+B) = [tan A + tan B] / [1 – tan A tan B]
Therefore, tan x + tan 2x – [[tan x + tan 2x]/[1- tan x tan 2x]] = 0
(tan x + tan 2x) (1 – 1/(1- tan x tan 2x)) = 0
(tan x + tan 2x) ([– tan x tan 2x] / [1 – tan x tan 2x]) = 0
Now, (tan x + tan 2x) = 0 or ([– tan x tan 2x] / [1 – tan x tan 2x]) = 0
(tan x + tan 2x) = 0 or [– tan x tan 2x] = 0 tan x = tan (-2x) or -tan x tan 2x = 0
tan x = tan (-2x) or 2tan2 x / (1 – tan2 x) = 0
[Using, tan 2x = 2 tan x / 1-tan2 x] x = nπ + (-2x)
or
x = mπ + 0 3x = nπ
or
x = mπ x = nπ/3 or x = mπ
∴ the general solution is x = nπ/3 or mπ,

Pradeep Gupta

Last Activity: 4 Years ago

tanx + tan 3x = 2tan 2x 
tanx + tan3x = tan2x +tan2x
thnx - tan2x = tan2x - tan3x
tam 2x -tanx =tan 3x - tan2x
tan( 2x-x )( 1 + tan2x tanx ) = tan(3x-2x) ( 1 + tan 3x tan2x)
tanx ( 1+ tan2x tanx ) - tanx ( 1+tan3xtan2x)=0
tanx {1 + tan2xtanx -1-tan3xtan2x}=0
tanx (tan2xtanx- tan3xtan2x)=0
tanx tan2x( tanx -tan3x) =0
If tanx = 0 or tan2x = 0 
x = nπ.           tan2x = nπ
                            x=nπ/2
and tanx - tan3x =0 
tanx = tan3x 
tan3x = tanx 
3x = nπ +x 
2x= nπ
x = nπ /2
 
 

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...