Flag Trigonometry> The product (1 + tan1°) (1 + tan2°) (1 + ...
question mark

The product (1 + tan1°) (1 + tan2°) (1 + tan3°) ………. (1 + tan 45°) equal to ?

Ankit Baral , 10 Years ago
Grade 10
anser 2 Answers
Sunil Kumar

Last Activity: 10 Years ago

We can start with :
=(1+tan 0o)(1 + tan1°) (1 + tan2°) (1 + tan3°) ………. (1 + tan 45°) {Since , tan 0o = 0}

Now , we know that
tan(A + B) = [ tan(A) + tan(B) ] / [ 1 - tan(A) tan(B) ]
And tan(45) = 1

So
tan(45) = [ tan1 + tan44 ] / [ 1 - tan1 tan44 ]
tan(45) = [ tan2 + tan43 ] / [ 1 - tan2 tan43 ]
.
.
.
tan(45) = [ tan22 + tan23 ] / [ 1 - tan22 tan23 ]

So we have ,
tan1 + tan44 = tan(45) [ 1 - tan1 tan44 ]
tan2 + tan43 = tan(45) [ 1 - tan2 tan43 ]
.
.
.
tan22 + tan23 = tan(45) [ 1 - tan22 tan23 ]




===========
So finally we have ,

(1 + tan1) (1 + tan2) (1 + tan3) ... (1 + tan44) (1 + tan45)

= (1 + tan1) (1 + tan2) (1 + tan3) ... (1 + tan44) (1 + 1)

= 2 (1 + tan1) (1 + tan2) (1 + tan3) ... (1 + tan44)

= 2 (1 + tan1) (1 + tan44) * (1 + tan2) (1 + tan43) * (1 + tan3) (1 + tan42) * ... * (1 + tan22) (1 + tan23)

= 2 (tan1 + tan44 + tan1 tan44 + 1) (tan2 + tan43 + tan2 tan43 + 1) ... (tan22 + tan23 + tan22 tan23 + 1)

= 2 ((tan45)(1 - tan1 tan44) + tan1 tan44 + 1) ((tan45)(1 - tan2 tan43) + tan2 tan43 + 1) ... ((tan45)(1 - tan22 tan23) + tan22 tan23 + 1)

= 2 (1 - tan1 tan44 + tan1 tan44 + 1) (1 - tan2 tan43 + tan2 tan43 + 1) ... (1 - tan22 tan23 + tan22 tan23 + 1)

= 2 (2) (2) ... (2)

= 2 (2^22)

= 2^23

= 8388608

Sourabh Singh

Last Activity: 10 Years ago

tan45° = (tana + tanb)/(1 - tana tanb) ........... where a + b = 45 { compound angle formula }
tana + tanb = (1 - tana tanb)tan45°
tana + tanb = 1 - tana tanb



(1 + tan 1°) (1 + tan 2°) (1 + tan 3°) ··· (1 + tan 45°)

= (1 + tan 1°)(1 + tan 44°) * (1 + tan 2°)(1 + tan 43°) * (1 + tan 3°)(1 + tan 42°) * .... (1 + tan 22°)(1 + tan 23°) * (1 + tan 45°)

= (1 + tan 1°)(1 + tan 44°) * (1 + tan 2°)(1 + tan 43°) * (1 + tan 3°)(1 + tan 42°) * .... (1 + tan 22°)(1 + tan 23°) * (1 + 1)

= (1 + tan 1°)(1 + tan 44°) * (1 + tan 2°)(1 + tan 43°) * (1 + tan 3°)(1 + tan 42°) * .... (1 + tan 22°)(1 + tan 23°) * 2

= 2(1 + tan 1°)(1 + tan 44°) * (1 + tan 2°)(1 + tan 43°) * (1 + tan 3°)(1 + tan 42°) * .... (1 + tan 22°)(1 + tan 23°)

= 2(1 + tan44° + tan1° + tan1° tan44°) * (1 + tan43° + tan2° + tan43° tan2°) * (1 + tan43° + tan3° + tan42° tan3°) * ... * (1 + tan22° + tan23° + tan22° tan23°)

= 2(1 + 1 - tan1° tan44° + tan1° tan44°) * (1 + 1 - tan2° tan43° + tan2° tan43°) * (1 + 1 - tan3° tan43° + tan3° tan43°) * ... * (1 + 1 - tan22° tan23° + tan22° tan23°)

= 2(1 + 1)(1 + 1)(1 + 1) ... (1 + 1) .............................. a total of 23 factors of (1 + 1)

= 2(1 + 1)²²

= 2(2)²²

= 2²³ = 2ⁿ

n = 23

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free