Flag Trigonometry> The maximum and minimum values of the fun...
question mark

The maximum and minimum values of the function 1+2sinx+2cos2x in(0,pi/2) where() are closed brackets.

Abhinav Acharya , 11 Years ago
Grade 11
anser 2 Answers
Rinkoo Gupta
f(x)=1+2sinx+2cos2x
f’(x)=2cosx-4cosxsinx=0
2cosx(1-2sinx)=0
cosx=0 or sinx=1/2
x=pi/2 or s=pi/6
pi/6 belongs to (0,pi/2) so we check this point.
f”(x)=-2sinx-4cos2x
f”(pi/6)=-2sin(pi/6)-4cos(pi/3)
=-2(1/2)-4(1/2)
=-1-2=-3 which is negative
so function is maximum at x=pi/6
so f(pi/6)=1+2sin(pi/6)+2cos2(pi/6)
=1+2(1/2)+2(sqrt3/2)2
=1+1+2(3/4)
=2+3/2=7/2
Thanks & Regards
Rinkoo Gupta
AskIITians Faculty
ApprovedApproved
Last Activity: 11 Years ago
Jitender Singh
Ans:
f(x)=1+2sinx+2cos^{2}x
Lets find the critical points
f^{'}(x)=0
f^{'}(x)=2cosx+4cosx(-sinx)=0
2cosx(1-2sinx)=0
cosx=0, sinx = \frac{1}{2}
x = \frac{\pi }{6}, \frac{\pi }{2}
To find local minima & maxima, we will find second derivative at critical points
f^{'}(x) = 2cosx-2sin2x
f^{''}(x) = -2sinx-4cos2x
f^{''}(\frac{\pi }{6}) = -2sin(\frac{\pi }{6})-4cos2(\frac{\pi }{6}) = -3
f^{''}(\frac{\pi }{2}) = -2sin(\frac{\pi }{2})-4cos2(\frac{\pi }{2}) = 2
x = \frac{\pi }{2}
is the minima
x = \frac{\pi }{6}
is the maxima
Maximum value of function:
f(\frac{\pi }{6}) = \frac{7}{2}
Minimumvalue of function:
f(\frac{\pi }{2}) = 3
Thanks & Regards
Jitender Singh
IIT Delhi
askIITians Faculty
ApprovedApproved
Last Activity: 11 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments