Flag Trigonometry> The maximum and minimum values of the fun...
question mark

The maximum and minimum values of the function 1+2sinx+2cos2x in(0,pi/2) where() are closed brackets.

Abhinav Acharya , 10 Years ago
Grade 11
anser 2 Answers
Rinkoo Gupta

Last Activity: 10 Years ago

f(x)=1+2sinx+2cos2x
f’(x)=2cosx-4cosxsinx=0
2cosx(1-2sinx)=0
cosx=0 or sinx=1/2
x=pi/2 or s=pi/6
pi/6 belongs to (0,pi/2) so we check this point.
f”(x)=-2sinx-4cos2x
f”(pi/6)=-2sin(pi/6)-4cos(pi/3)
=-2(1/2)-4(1/2)
=-1-2=-3 which is negative
so function is maximum at x=pi/6
so f(pi/6)=1+2sin(pi/6)+2cos2(pi/6)
=1+2(1/2)+2(sqrt3/2)2
=1+1+2(3/4)
=2+3/2=7/2
Thanks & Regards
Rinkoo Gupta
AskIITians Faculty

Jitender Singh

Last Activity: 10 Years ago

Ans:
f(x)=1+2sinx+2cos^{2}x
Lets find the critical points
f^{'}(x)=0
f^{'}(x)=2cosx+4cosx(-sinx)=0
2cosx(1-2sinx)=0
cosx=0, sinx = \frac{1}{2}
x = \frac{\pi }{6}, \frac{\pi }{2}
To find local minima & maxima, we will find second derivative at critical points
f^{'}(x) = 2cosx-2sin2x
f^{''}(x) = -2sinx-4cos2x
f^{''}(\frac{\pi }{6}) = -2sin(\frac{\pi }{6})-4cos2(\frac{\pi }{6}) = -3
f^{''}(\frac{\pi }{2}) = -2sin(\frac{\pi }{2})-4cos2(\frac{\pi }{2}) = 2
x = \frac{\pi }{2}
is the minima
x = \frac{\pi }{6}
is the maxima
Maximum value of function:
f(\frac{\pi }{6}) = \frac{7}{2}
Minimumvalue of function:
f(\frac{\pi }{2}) = 3
Thanks & Regards
Jitender Singh
IIT Delhi
askIITians Faculty

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...