Flag Trigonometry> tanθ + tan2θ + √3 tanθ tan2θ = √3 Find ta...
question mark

tanθ + tan2θ + √3 tanθ tan2θ = √3Find tanθ ? Please help.

Ajit , 7 Years ago
Grade 11
anser 2 Answers
Sreevignesh

Last Activity: 7 Years ago

I can't insert theta so.... I am using x instead of theta
Tan x+tan 2x+ √3 tan x tan 2x =√3
                            Tan x + tan 2x = √ 3- √3 tan x tan 2 x.    
                            Tan x +tan 2 x= √3(1-tan x tan 2x)
                                             √3.  = (tan x+ tan 2x)/(1-tan x tan 2 x)
                                      √3 = tan ( x+2x).           [Tan (x+2x)=(tan x+ tan 2x)/(1-tan x tan 2x)]
                                      √3 = tan 3 x
                                     3x.  = tan ^-1 ( √3)
                                     3x.   =  π/3
                                       x.   = π/9 
                            Now,  tan x = tan π/9 
                                                = tan 20° = 0.3639
 
      

Kyra

Last Activity: 7 Years ago

Take root 3tantheta tan 2theta to the right hand side and then take root 3 common and then bring 1+tan theta tan2theta in denominator then tan3theta is equal to root 3.

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...