Flag Trigonometry> tan^2(π/16)+tan^(2π/16)+tan^2(3π/16)+.......
question mark

tan^2(π/16)+tan^(2π/16)+tan^2(3π/16)+......+tan^(7π/16)

Sanskar Mahato , 6 Years ago
Grade 11
anser 1 Answers
Aarushi Ahlawat

Last Activity: 6 Years ago

Group terms (\pi/16) and (7\pi/16) and similarly (2\pi/16) and (6\pi/16) ….. It will be like given below:
 
=tan^2(\pi/16)+tan^2(7\pi/16)+tan^2(2\pi/16)+tan^2(6\pi/16)+tan^2(3\pi/16)+tan^2(5\pi/16)+tan^2(4\pi/16)
=\left (tan(\pi/16)+tan(7\pi/16) \right )^2-2tan(\pi/16)tan(7\pi/16)+\left (tan(2\pi/16)+tan(6\pi/16) \right )^2-2tan(2\pi/16)tan(6\pi/16)+\left (tan(3\pi/16)+tan(5\pi/16) \right )^2-2tan(3\pi/16)tan(6\pi/16)+1
=\left (tan(\pi/16)+tan(7\pi/16) \right )^2-2tan(\pi/16)tan(\pi/2-\pi/16)+\left (tan(2\pi/16)+tan(6\pi/16) \right )^2-2tan(2\pi/16)tan(\pi/2-2\pi/16)+\left (tan(3\pi/16)+tan(5\pi/16) \right )^2-2tan(3\pi/16)tan(\pi/2-3\pi/16)+1
=\left (tan(\pi/16)+tan(7\pi/16) \right )^2-2tan(\pi/16)cot(\pi/16)+\left (tan(2\pi/16)+tan(6\pi/16) \right )^2-2tan(2\pi/16)cot(2\pi/16)+\left (tan(3\pi/16)+tan(5\pi/16) \right )^2-2tan(3\pi/16)cot(3\pi/16)+1
=\left (tan(\pi/16)+tan(7\pi/16) \right )^2-2+\left (tan(2\pi/16)+tan(6\pi/16) \right )^2-2+\left (tan(3\pi/16)+tan(5\pi/16) \right )^2-2+1
=\left (tan(\pi/16)+tan(7\pi/16) \right )^2+\left (tan(2\pi/16)+tan(6\pi/16) \right )^2+\left (tan(3\pi/16)+tan(5\pi/16) \right )^2-5=\left (tan(\pi/16)+cot(\pi/16) \right )^2+\left (tan(2\pi/16)+cot(2\pi/16) \right )^2+\left (tan(3\pi/16)+cot(3\pi/16) \right )^2-5
=\left (\frac{sin^2(\pi/16)+cos^2(\pi/16)}{sin(\pi/16)cos(\pi/16)}\right )^2+\left (\frac{sin^2(2\pi/16)+cos^2(2\pi/16)}{sin(2\pi/16)cos(2\pi/16)}\right )^2+\left (\frac{sin^2(3\pi/16)+cos^2(3\pi/16)}{sin(3\pi/16)cos(3\pi/16)}\right )^2-5
=\left (\frac{1}{sin(\pi/16)cos(\pi/16)}\right )^2+\left (\frac{1}{sin(2\pi/16)cos(2\pi/16)}\right )^2+\left (\frac{1}{sin(3\pi/16)cos(3\pi/16)}\right )^2-5
 
=\left (\frac{2}{sin(2\pi/16))}\right )^2+\left (\frac{2}{sin(4\pi/16)}\right )^2+\left (\frac{2}{sin(6\pi/16)}\right )^2-5
 
=\left (\frac{2}{sin(2\pi/16))}\right )^2+\left (\frac{2}{\frac{1}{\sqrt{2}}}\right )^2+\left (\frac{2}{sin(6\pi/16)}\right )^2-5
 
=\left (\frac{2}{sin(2\pi/16))}\right )^2+8+\left (\frac{2}{sin(6\pi/16)}\right )^2-5
=\left (\frac{2}{sin(\pi/8))}\right )^2+\left (\frac{2}{sin(3\pi/8)}\right )^2+3
 
=\left (\frac{2}{sin(\pi/8))}\right )^2+\left (\frac{2}{cos(\pi/8)}\right )^2+3
=\left (\frac{2(cos^2(\pi/8)+sin^2(\pi/8))}{sin(\pi/8)cos(\pi/8))}\right )^2+3
=\left (\frac{2X2}{2sin(\pi/8)cos(\pi/8))}\right )^2+3
 
=\left (\frac{2X2}{sin(\pi/4)}\right )^2+3
=\left (\frac{2X2}{\frac{1}{\sqrt{2}}} \right )^2+3=32+3=35
It looks lengthy by if you solve for only one group and use solution for remaining two groups with appropriate multiple for (\pi/16) term. That way it will be solved in few steps. 

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...