Flag Trigonometry> sir could u pls solve the circled questio...
question mark

sir could u pls solve the circled questions in this image the answers are 3,3,2 (correct options) but pls tell me the procedure

Raghav Rao , 8 Years ago
Grade 12
anser 3 Answers
Ajay

Last Activity: 8 Years ago

Answer for question 87 . will try to post answers for other question im separate posts…...............................
Given\quad cot\theta \quad =\quad \frac { 2tan7.5 }{ 1-{ tan }^{ 2 }7.5 } \quad find\quad sin3\theta \\ Using\quad formula\quad for\quad tan2\theta \\ tan15\quad =\quad \frac { 2tan7.5 }{ 1-{ tan }^{ 2 }7.5 } \\ cot\theta \quad =\quad tan15\quad =\quad cot(90-15)\quad =\quad cot75\\ hence\quad \theta \quad =\quad 75\\ Now\quad sin3\theta \quad \quad \quad =\quad sin225\quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad sin(180+45)\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad -sin45\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =-\frac { 1 }{ \sqrt { 2 } }

Ajay

Last Activity: 8 Years ago

Answer for question 88........................................................................................
Given\quad x+\frac { 1 }{ x } =2cos20\quad find\quad { x }^{ 3 }+\frac { 1 }{ { x }^{ 3 } } \\ We\quad know\quad { \left( x+\frac { 1 }{ x } \right) }^{ 3 }\quad \quad =\quad { x }^{ 3 }+\frac { 1 }{ { x }^{ 3 } } +3{ x }^{ 2 }\left( \frac { 1 }{ x } \right) +3x\left( \frac { 1 }{ { x }^{ 2 } } \right) \\ or\quad { x }^{ 3 }+\frac { 1 }{ { x }^{ 3 } } \quad =\quad { \left( x+\frac { 1 }{ x } \right) }^{ 3 }-3\left( x+\frac { 1 }{ x } \right) \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad { (2cos20) }^{ 3 }-3.2cos20\quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad 2\left( 4{ cos }^{ 3 }20-3cos20 \right) \\ using\quad formula\quad for\quad cos3\theta \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad 2cos60\quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =1

Ajay

Last Activity: 8 Years ago

finaly\quad answer\quad for\quad last\quad question\\ Given\quad sec\theta -cos\theta =1\quad find\quad { tan }^{ 2 }\theta /2\\ \frac { 1 }{ cos\theta } -cos\theta \quad =1\\ { cos }^{ 2 }\theta +cos\theta =1\\ cos\theta \quad =\quad \frac { -1\pm \sqrt { 5 } }{ 2 } \\ Since\quad -1<cos\theta <1\quad and\quad \frac { -1-\sqrt { 5 } }{ 2 } \quad <\quad -1\quad ignoring\quad this\quad root\\ Hence\quad cos\theta \quad =\quad \frac { -1+\sqrt { 5 } }{ 2 } \\ 2{ cos }^{ 2 }\theta /2\quad -\quad 1\quad =\quad \frac { -1+\sqrt { 5 } }{ 2 } \\ { cos }^{ 2 }\theta /2\quad =\quad \frac { \sqrt { 5 } +1 }{ 4 } \\ { sec }^{ 2 }\theta /2\quad =\quad \frac { 4 }{ \sqrt { 5 } +1 } \\ now\quad since\quad { tan }^{ 2 }\theta /2\quad =\quad { sec }^{ 2 }\theta /2-1\\ \quad \quad \quad \quad \quad \quad \quad \quad =\quad \frac { 4 }{ \sqrt { 5 } +1 } -1

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...