Flag Trigonometry> SinA+ 2sin3A + sin5A/sin3A + 2sin5A + sin...
question mark

SinA+ 2sin3A + sin5A/sin3A + 2sin5A + sin7A=sin3A/sin5A

Sajjan , 7 Years ago
Grade 11
anser 1 Answers
Vikas TU

Last Activity: 7 Years ago

Dear Student,
By applying sin(x+y) and cos(x-y),
sin(x + y) cos(x - y) = [sinx cosy + siny cosx][cosx cosy + sinx siny]
=(sinx cosx cos²y + sinx cosx sin²y) + (siny cosy cos²x + sin²x siny cosy)
=(sinx cosx)(cos²y + sin²y) + (siny cosy)(cos²x + sin²x)
=sinx cosx + siny cosy
=(1/2)sin2x + (1/2)sin2y (By the formula of 2theta for sin)
=(1/2)(sin2x + sin2y) = sin(x + y) cos(x - y)  ----- equation(1)
the question given was-
(sina + 2sin3a + sin5a) / (sin3a + 2sin5a + sin7a)
=[(sina + sin3a) + (sin3a + sin5a)] / [(sin3a + sin5a) + (sin5a + sin7a)]
 
 
From equation (1): [2sin{(3a + a)/2} cos{(3a - a)/2} + 2sin{(5a + 3a)/2} cos{(5a - 3a)/2}] / [2sin{(5a + 3a)/2} cos{(5a - 3a)/2} + 2sin{(7a + 5a)/2} cos{(7a - 5a)/2}] =
[2sin2a cosa + 2sin4a cosa] / [2sin4a cosa + 2sin6a cosa] =
2cosa [sin2a + sin4a] / [{2cosa}{sin4a + sin6a}] =(sin2a + sin4a) / (sin4a + sin6a)
From equation (1):  2sin{(4a + 2a)/2} cos{(4a - 2a)/2} / [2sin{(6a + 4a)/2} cos{(6a - 4a)/2}]
=2sin3a cosa / [2sin5a cosa] =sin3a / sin5a (hence proved)
Cheers!!
Regards,
Vikas (B. Tech. 4th year
Thapar University)

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...