Flag Trigonometry> Prove that tan 75+cot 75=4 using compund ...
question mark

Prove that tan 75+cot 75=4 using compund angle formula

Ananya , 6 Years ago
Grade 10
anser 1 Answers
Soumendu Majumdar

Last Activity: 6 Years ago

Dear Student,
tan 75^{\circ} + cot 75^{\circ} = sec 75^{\circ}cosec75^{\circ}
so sin75^{\circ}=sin(45^{\circ}+30^{\circ}) =sin45^{\circ}cos30^{\circ} +cos45^{\circ}sin30^{\circ}   since sin(A+B)=sinAcosB + sinBcosA
=(\sqrt{3}+1)/2\sqrt{2}
cos75^{\circ}=cos(45^{\circ}+30^{\circ})=cos45^{\circ}cos30^{\circ} - sin45^{\circ}sin30^{\circ}   since cos(A+B)=cosAcosB – sinAsinB
=(\sqrt{3}-1)/2\sqrt{2}
Now sec75^{\circ}cose75^{\circ}=1/sin75^{\circ}cos75^{\circ}
=(2\sqrt2 )^2/(\sqrt3+1)(\sqrt3-1)
=8/2
= 4
Hope it helps!

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...