MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade: 11
        
Prove that tan2 Π/16+ tan2 2Π/16+ tan2 3Π/16+… tan2 7Π/16=35
4 years ago

Answers : (2)

anvesh
45 Points
							

an²(π/16) + tan²(7π/16) 
= [tan(π/16) + tan(7π/16)]² − 2 tan(π/16)tan(7π/16)
= [tan(π/16) + tan(7π/16)]² − 2 
 
Similarly,
tan²(3π/16) + tan²(5π/16)  = [tan(3π/16) + tan(5π/16)]² − 2 
tan²(2π/16) + tan²(6π/16)  = [tan(2π/16) + tan(6π/16)]² − 2      

Now,  
[tan(π/16) + tan(7π/16)]² 
= [sin(7π/16 + π/16) / ((cos(π/16) cos(7π/16))]² 
=  1/((sin(7π/16) cos(7π/16))²
=  4/sin²(π/8)


Similarly,
[tan(2π/16) + tan(6π/16)]² = 4/sin²(π/4)
[tan(3π/16) + tan(5π/16)]² = 4/sin²(6π/16)

Therefore,
tan²(π/16) + tan²(2π/16) + tan²(3π/16) + tan²(4π/16) + tan²(5π/16) + tan²(6π/16) + tan²(7π/16)
= 4/sin²(π/8) − 2 + 4/sin²(π/4) − 2 + 4/sin²(6π/16) − 2 + tan²π/4
= 4/sin²(π/8) + 4/sin²(6π/16) + 3
= 4[1/sin²(π/8) + 1/sin²(3π/8)] + 3
= 4[sin²(π/8) + cos²(π/8] / [sin²(π/8) cos²(π/8)] + 3
= 16/sin²(π/4)  + 3
35

an²(π/16) + tan²(7π/16) 
= [tan(π/16) + tan(7π/16)]² − 2 tan(π/16)tan(7π/16)
= [tan(π/16) + tan(7π/16)]² − 2 
 
Similarly,
tan²(3π/16) + tan²(5π/16)  = [tan(3π/16) + tan(5π/16)]² − 2 
tan²(2π/16) + tan²(6π/16)  = [tan(2π/16) + tan(6π/16)]² − 2      

Now,  
[tan(π/16) + tan(7π/16)]² 
= [sin(7π/16 + π/16) / ((cos(π/16) cos(7π/16))]² 
=  1/((sin(7π/16) cos(7π/16))²
=  4/sin²(π/8)


Similarly,
[tan(2π/16) + tan(6π/16)]² = 4/sin²(π/4)
[tan(3π/16) + tan(5π/16)]² = 4/sin²(6π/16)

Therefore,
tan²(π/16) + tan²(2π/16) + tan²(3π/16) + tan²(4π/16) + tan²(5π/16) + tan²(6π/16) + tan²(7π/16)
= 4/sin²(π/8) − 2 + 4/sin²(π/4) − 2 + 4/sin²(6π/16) − 2 + tan²π/4
= 4/sin²(π/8) + 4/sin²(6π/16) + 3
= 4[1/sin²(π/8) + 1/sin²(3π/8)] + 3
= 4[sin²(π/8) + cos²(π/8] / [sin²(π/8) cos²(π/8)] + 3
= 16/sin²(π/4)  + 3
35

an²(π/16) + tan²(7π/16) 
= [tan(π/16) + tan(7π/16)]² − 2 tan(π/16)tan(7π/16)
= [tan(π/16) + tan(7π/16)]² − 2 
 
Similarly,
tan²(3π/16) + tan²(5π/16)  = [tan(3π/16) + tan(5π/16)]² − 2 
tan²(2π/16) + tan²(6π/16)  = [tan(2π/16) + tan(6π/16)]² − 2      

Now,  
[tan(π/16) + tan(7π/16)]² 
= [sin(7π/16 + π/16) / ((cos(π/16) cos(7π/16))]² 
=  1/((sin(7π/16) cos(7π/16))²
=  4/sin²(π/8)


Similarly,
[tan(2π/16) + tan(6π/16)]² = 4/sin²(π/4)
[tan(3π/16) + tan(5π/16)]² = 4/sin²(6π/16)

Therefore,
tan²(π/16) + tan²(2π/16) + tan²(3π/16) + tan²(4π/16) + tan²(5π/16) + tan²(6π/16) + tan²(7π/16)
= 4/sin²(π/8) − 2 + 4/sin²(π/4) − 2 + 4/sin²(6π/16) − 2 + tan²π/4
= 4/sin²(π/8) + 4/sin²(6π/16) + 3
= 4[1/sin²(π/8) + 1/sin²(3π/8)] + 3
= 4[sin²(π/8) + cos²(π/8] / [sin²(π/8) cos²(π/8)] + 3
= 16/sin²(π/4)  + 3
35an²(π/16) + tan²(7π/16) 

= [tan(π/16) + tan(7π/16)]² − 2 tan(π/16)tan(7π/16)
= [tan(π/16) + tan(7π/16)]² − 2 
 
Similarly,
tan²(3π/16) + tan²(5π/16)  = [tan(3π/16) + tan(5π/16)]² − 2 
tan²(2π/16) + tan²(6π/16)  = [tan(2π/16) + tan(6π/16)]² − 2      

Now,  
[tan(π/16) + tan(7π/16)]² 
= [sin(7π/16 + π/16) / ((cos(π/16) cos(7π/16))]² 
=  1/((sin(7π/16) cos(7π/16))²
=  4/sin²(π/8)


Similarly,
[tan(2π/16) + tan(6π/16)]² = 4/sin²(π/4)
[tan(3π/16) + tan(5π/16)]² = 4/sin²(6π/16)

Therefore,
tan²(π/16) + tan²(2π/16) + tan²(3π/16) + tan²(4π/16) + tan²(5π/16) + tan²(6π/16) + tan²(7π/16)
= 4/sin²(π/8) − 2 + 4/sin²(π/4) − 2 + 4/sin²(6π/16) − 2 + tan²π/4
= 4/sin²(π/8) + 4/sin²(6π/16) + 3
= 4[1/sin²(π/8) + 1/sin²(3π/8)] + 3
= 4[sin²(π/8) + cos²(π/8] / [sin²(π/8) cos²(π/8)] + 3
= 16/sin²(π/4)  + 3
35an²(π/16) + tan²(7π/16) 

= [tan(π/16) + tan(7π/16)]² − 2 tan(π/16)tan(7π/16)
= [tan(π/16) + tan(7π/16)]² − 2 
 
Similarly,
tan²(3π/16) + tan²(5π/16)  = [tan(3π/16) + tan(5π/16)]² − 2 
tan²(2π/16) + tan²(6π/16)  = [tan(2π/16) + tan(6π/16)]² − 2      

Now,  
[tan(π/16) + tan(7π/16)]² 
= [sin(7π/16 + π/16) / ((cos(π/16) cos(7π/16))]² 
=  1/((sin(7π/16) cos(7π/16))²
=  4/sin²(π/8)


Similarly,
[tan(2π/16) + tan(6π/16)]² = 4/sin²(π/4)
[tan(3π/16) + tan(5π/16)]² = 4/sin²(6π/16)

Therefore,
tan²(π/16) + tan²(2π/16) + tan²(3π/16) + tan²(4π/16) + tan²(5π/16) + tan²(6π/16) + tan²(7π/16)
= 4/sin²(π/8) − 2 + 4/sin²(π/4) − 2 + 4/sin²(6π/16) − 2 + tan²π/4
= 4/sin²(π/8) + 4/sin²(6π/16) + 3
= 4[1/sin²(π/8) + 1/sin²(3π/8)] + 3
= 4[sin²(π/8) + cos²(π/8] / [sin²(π/8) cos²(π/8)] + 3
= 16/sin²(π/4)  + 3
35an²(π/16) + tan²(7π/16) 

= [tan(π/16) + tan(7π/16)]² − 2 tan(π/16)tan(7π/16)
= [tan(π/16) + tan(7π/16)]² − 2 
 
Similarly,
tan²(3π/16) + tan²(5π/16)  = [tan(3π/16) + tan(5π/16)]² − 2 
tan²(2π/16) + tan²(6π/16)  = [tan(2π/16) + tan(6π/16)]² − 2      

Now,  
[tan(π/16) + tan(7π/16)]² 
= [sin(7π/16 + π/16) / ((cos(π/16) cos(7π/16))]² 
=  1/((sin(7π/16) cos(7π/16))²
=  4/sin²(π/8)


Similarly,
[tan(2π/16) + tan(6π/16)]² = 4/sin²(π/4)
[tan(3π/16) + tan(5π/16)]² = 4/sin²(6π/16)

Therefore,
tan²(π/16) + tan²(2π/16) + tan²(3π/16) + tan²(4π/16) + tan²(5π/16) + tan²(6π/16) + tan²(7π/16)
= 4/sin²(π/8) − 2 + 4/sin²(π/4) − 2 + 4/sin²(6π/16) − 2 + tan²π/4
= 4/sin²(π/8) + 4/sin²(6π/16) + 3
= 4[1/sin²(π/8) + 1/sin²(3π/8)] + 3
= 4[sin²(π/8) + cos²(π/8] / [sin²(π/8) cos²(π/8)] + 3
= 16/sin²(π/4)  + 3
35

an²(π/16) + tan²(7π/16) 
= [tan(π/16) + tan(7π/16)]² − 2 tan(π/16)tan(7π/16)
= [tan(π/16) + tan(7π/16)]² − 2 
 
Similarly,
tan²(3π/16) + tan²(5π/16)  = [tan(3π/16) + tan(5π/16)]² − 2 
tan²(2π/16) + tan²(6π/16)  = [tan(2π/16) + tan(6π/16)]² − 2      

Now,  
[tan(π/16) + tan(7π/16)]² 
= [sin(7π/16 + π/16) / ((cos(π/16) cos(7π/16))]² 
=  1/((sin(7π/16) cos(7π/16))²
=  4/sin²(π/8)


Similarly,
[tan(2π/16) + tan(6π/16)]² = 4/sin²(π/4)
[tan(3π/16) + tan(5π/16)]² = 4/sin²(6π/16)

Therefore,
tan²(π/16) + tan²(2π/16) + tan²(3π/16) + tan²(4π/16) + tan²(5π/16) + tan²(6π/16) + tan²(7π/16)
= 4/sin²(π/8) − 2 + 4/sin²(π/4) − 2 + 4/sin²(6π/16) − 2 + tan²π/4
= 4/sin²(π/8) + 4/sin²(6π/16) + 3
= 4[1/sin²(π/8) + 1/sin²(3π/8)] + 3
= 4[sin²(π/8) + cos²(π/8] / [sin²(π/8) cos²(π/8)] + 3
= 16/sin²(π/4)  + 3
35an²(π/16) + tan²(7π/16) 

= [tan(π/16) + tan(7π/16)]² − 2 tan(π/16)tan(7π/16)
= [tan(π/16) + tan(7π/16)]² − 2 
 
Similarly,
tan²(3π/16) + tan²(5π/16)  = [tan(3π/16) + tan(5π/16)]² − 2 
tan²(2π/16) + tan²(6π/16)  = [tan(2π/16) + tan(6π/16)]² − 2      

Now,  
[tan(π/16) + tan(7π/16)]² 
= [sin(7π/16 + π/16) / ((cos(π/16) cos(7π/16))]² 
=  1/((sin(7π/16) cos(7π/16))²
=  4/sin²(π/8)


Similarly,
[tan(2π/16) + tan(6π/16)]² = 4/sin²(π/4)
[tan(3π/16) + tan(5π/16)]² = 4/sin²(6π/16)

Therefore,
tan²(π/16) + tan²(2π/16) + tan²(3π/16) + tan²(4π/16) + tan²(5π/16) + tan²(6π/16) + tan²(7π/16)
= 4/sin²(π/8) − 2 + 4/sin²(π/4) − 2 + 4/sin²(6π/16) − 2 + tan²π/4
= 4/sin²(π/8) + 4/sin²(6π/16) + 3
= 4[1/sin²(π/8) + 1/sin²(3π/8)] + 3
= 4[sin²(π/8) + cos²(π/8] / [sin²(π/8) cos²(π/8)] + 3
= 16/sin²(π/4)  + 3
35

4 years ago
Mohammed Tameem Mohiuddin
10 Points
							
hey thanx bro
4 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 31 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details