Flag Trigonometry> Prove that ~sin36° + sin72° + cos18° + co...
question mark

Prove that ~sin36° + sin72° + cos18° + cos54° = 5/16

Ayush Baghel , 6 Years ago
Grade 11
anser 3 Answers
Arun

Last Activity: 6 Years ago

Dear Ayush
 
You have typed a wrong question.
There should be signs of multiplication instead of plus sign.

Arun

Last Activity: 6 Years ago

Sin36° sin72° sin108° sin144°
= sin36° sin72° sin(90° + 18°) sin(90° + 54°)
= sin36° sin72° cos18° cos 54°
= sin^2 36° sin^2 72° {since, cos18° = sin72° and cos54° = sin36°}
= { ( √(10 - 2√5 ) / 4 }2 [ { √(10 + 2√5) } / 4 ]2 {since, sin36° = ( √(10 - 2√5 ) / 4 and sin72° = { √(10 + 2√5) } / 4}
= [ (10 - 2√5 ) / 16 ] [ (10 + 2√5) } / 16 ]
= { (10)^2 - (2√5)^2 } / ( 16 * 16 ) {since, (A - B)(A + B) = A^2 - B^2 }
= (100 - 20) / 256
= 80 / 256
= 5 / 16

Siddharth Singh

Last Activity: 6 Years ago

Sin36° sin72° sin108° sin144°= sin36° sin72° sin(90° + 18°) sin(90° + 54°)= sin36° sin72° cos18° cos 54°= sin^2 36° sin^2 72° {since, cos18° = sin72° and cos54° = sin36°}= { ( √(10 - 2√5 ) / 4 }2 [ { √(10 + 2√5) } / 4 ]2 {since, sin36° = ( √(10 - 2√5 ) / 4 and sin72° = { √(10 + 2√5) } / 4}= [ (10 - 2√5 ) / 16 ] [ (10 + 2√5) } / 16 ]= { (10)^2 - (2√5)^2 } / ( 16 * 16 ) {since, (A - B)(A + B) = A^2 - B^2 }= (100 - 20) / 256= 80 / 256= 5 / 16Thanks

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...