Flag Trigonometry> prove that cos(pi/15).cos(2pi/15).cos(3pi...
question mark

prove that cos(pi/15).cos(2pi/15).cos(3pi/15).cos(4pi/15).cos(5pi/15).cos(6pi/15).cos(7pi/15)=1/128

sujith , 7 Years ago
Grade 11
anser 2 Answers
Vikas TU

Last Activity: 7 Years ago

LHS = cos(pi/15).cos(2pi/15).cos(3pi/15).cos(4pi/15).cos(5pi/15).cos(6pi/15).cos(7pi/15) 
Duplicate and partition LHS by 128sin(pi/15) 
We realize that 2 sin a cos a = sin 2a 
=> {64/128 sin (pi/15) } . 2 sin (pi/15) . cos(pi/15) .cos(2pi/15) .cos(3pi/15) .cos(4pi/15) .cos(5pi/15).cos(6pi/15).cos(7pi/15) 
=> {64/128 sin (pi/15) }.sin(2pi/15) .cos(2pi/15) .cos(3pi/15) .cos(4pi/15) .cos(5pi/15) .cos(6pi/15).cos(7pi/15) 
=> {32/128 sin (pi/15) }.sin(4pi/15) .cos(3pi/15) .cos(4pi/15) .cos(5pi/15) .cos(6pi/15).cos(7pi/15) 
=> {16/128 sin (pi/15) }sin (8pi/15) .cos(3pi/15) .cos(5pi/15).cos(6pi/15).cos(7pi/15) 
=> {16/128 sin (pi/15) } sin (7pi/15) .cos(3pi/15) .cos(5pi/15).cos(6pi/15).cos(7pi/15) 
[since sin(8pi/15) can be composed as sin(pi – 8pi/15) = sin(7pi/15) ] 
Also making each of the 2 sin a cos a = sin 2a 
=1/128. 

Bizhan assadian

Last Activity: 7 Years ago

First method (use Formula):
There is a simple, yet obscure trig formula, which solves this problem instantly. Here it is:
cos(pi/2k+1) cos(2pi/2k+1) cos(3pi/2k+1).....cos(kpi/2k+1) = 1/2^k
For this problem let 2k + 1 = 15 ---> k = 7 , thus the answer = 1/2^7 = 1/128
Bizhan Assadian

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free