Flag Trigonometry> Prove that {1/(sec^2 a-cos^2 a) + 1/(cose...
question mark

Prove that
{1/(sec^2 a-cos^2 a) + 1/(cosec^2 a-sin^ a)}*cos^2 a sin^2 a=(1-cos^2 a sin^2 a)/(2+cos^2 a sin^2 a)

Bahirithi , 6 Years ago
Grade 12
anser 1 Answers
Aarushi Ahlawat

Last Activity: 6 Years ago

 
 
First convert all the terms to sin and cos terms and then use identity to replace sin^2a+cos^a with 1. Here are the steps
LHS=\left [ \frac{1}{sec^{2}(a)-cos^{2}(a)}+\frac{1}{cosec^{2}(a)-sin^{2}(a)} \right ]cos^{2}(a)sin^{2}(a)
 
=\left [ \frac{cos^{2}(a)}{1-cos^{4}(a)}+\frac{sin^{2}(a)}{1-sin^{4}(a)} \right ]cos^{2}(a)sin^{2}(a)
=\left [ \frac{cos^{2}(a)}{(1-cos^{2}(a))(1+cos^{2}(a))}+\frac{sin^{2}(a)}{(1-sin^{2}(a))(1+sin^{2}(a))} \right ]cos^{2}(a)sin^{2}(a)
=\left [ \frac{cos^{2}(a)}{sin^{2}(a)(1+cos^{2}(a))}+\frac{sin^{2}(a)}{cos^{2}(a)(1+sin^{2}(a))} \right ]cos^{2}(a)sin^{2}(a)
=\left [ \frac{cos^{2}(a)cos^{2}(a)(1+sin^{2}(a))+sin^{2}(a)sin^{2}(a)(1+cos^{2}(a))}{sin^{2}(a)(1+cos^{2}(a))cos^{2}(a)(1+sin^{2}(a))} \right ]cos^{2}(a)sin^{2}(a)
=\frac{cos^{4}(a)(1+sin^{2}(a))+sin^{4}(a)(1+cos^{2}(a))}{(1+cos^{2}(a))(1+sin^{2}(a))}
=\frac{cos^{4}(a)+cos^{4}(a)sin^{2}(a)+sin^{4}(a)+sin^{4}(a)cos^{2}(a))}{(1+cos^{2}(a)+sin^{2}(a)+cos^{2}(a)sin^{2}(a))}
=\frac{cos^{4}(a)+sin^{4}(a)+cos^{2}(a)sin^{2}(a)(sin^{2}(a)+cos^{2}(a))} {(1+1+cos^{2}(a)sin^{2}(a))}
=\frac{cos^{4}(a)+sin^{4}(a)+cos^{2}(a)sin^{2}(a)} {(2+cos^{2}(a)sin^{2}(a))}
=\frac{cos^{4}(a)+sin^{4}(a)+2cos^{2}(a)sin^{2}(a)-cos^{2}(a)sin^{2}(a)} {(2+cos^{2}(a)sin^{2}(a))}
=\frac{(cos^{2}(a)+sin^{2}(a))^{2}-cos^{2}(a)sin^{2}(a)} {(2+cos^{2}(a)sin^{2}(a))}
=\frac{1-cos^{2}(a)sin^{2}(a)} {2+cos^{2}(a)sin^{2}(a)}
=RHS
 
 
 
 
 
 
 
 
 
 
 
 
 

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free