Saurabh Koranglekar
Last Activity: 6 Years ago
To prove the identity \( \csc(a + b) = \frac{\sec A \sec B \csc A \csc B}{\sec A \csc B + \csc A \sec B} \), we can start by recalling some fundamental trigonometric identities and relationships. Let’s break this down step by step.
Understanding the Left Side
The left-hand side is \( \csc(a + b) \), which can be expressed in terms of sine:
\[ \csc(a + b) = \frac{1}{\sin(a + b)} \]
Using the sine addition formula, we know that:
\[ \sin(a + b) = \sin a \cos b + \cos a \sin b \]
Thus, we have:
\[ \csc(a + b) = \frac{1}{\sin a \cos b + \cos a \sin b} \]
Examining the Right Side
Now let’s analyze the right-hand side:
\[ \frac{\sec A \sec B \csc A \csc B}{\sec A \csc B + \csc A \sec B} \]
First, rewrite the secant and cosecant functions in terms of sine and cosine:
- \( \sec A = \frac{1}{\cos A} \)
- \( \sec B = \frac{1}{\cos B} \)
- \( \csc A = \frac{1}{\sin A} \)
- \( \csc B = \frac{1}{\sin B} \)
Substituting into the Right Side
Substituting these definitions into the right-hand side gives us:
\[ \frac{\left(\frac{1}{\cos A}\right)\left(\frac{1}{\cos B}\right)\left(\frac{1}{\sin A}\right)\left(\frac{1}{\sin B}\right)}{\left(\frac{1}{\cos A}\right)\left(\frac{1}{\sin B}\right) + \left(\frac{1}{\sin A}\right)\left(\frac{1}{\cos B}\right)} \]
This simplifies to:
\[ \frac{\frac{1}{\cos A \cos B \sin A \sin B}}{\frac{1}{\cos A \sin B} + \frac{1}{\sin A \cos B}} \]
Finding a Common Denominator
Next, let’s find a common denominator for the expression in the denominator:
\[ \frac{1}{\cos A \sin B} + \frac{1}{\sin A \cos B} = \frac{\sin A \cos B + \cos A \sin B}{\sin A \sin B \cos A \cos B} \]
So the right-hand side becomes:
\[ \frac{\frac{1}{\cos A \cos B \sin A \sin B}}{\frac{\sin A \cos B + \cos A \sin B}{\sin A \sin B \cos A \cos B}} \]
Simplifying Further
When we divide by a fraction, it’s equivalent to multiplying by its reciprocal. Thus, we have:
\[ \frac{1}{\cos A \cos B \sin A \sin B} \cdot \frac{\sin A \sin B \cos A \cos B}{\sin A \cos B + \cos A \sin B} \]
This simplifies to:
\[ \frac{1}{\sin A \cos B + \cos A \sin B} \]
Final Comparison
Notice that this expression matches our earlier expression for \( \csc(a + b) \):
\[ \csc(a + b) = \frac{1}{\sin(a + b)} = \frac{1}{\sin A \cos B + \cos A \sin B} \]
Since both sides are equal, we have successfully proven the identity:
\[ \csc(a + b) = \frac{\sec A \sec B \csc A \csc B}{\sec A \csc B + \csc A \sec B} \]
Wrap-Up
This proof illustrates the power of trigonometric identities and how they can be manipulated to show equalities. Understanding these identities not only helps in proofs but also enhances problem-solving skills in trigonometry. Keep practicing, and these concepts will become second nature!