×

#### Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Click to Chat

1800-1023-196

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

Plzz ans both...................................more than one ootions are correct


one year ago

Arun
25256 Points
							secA = x + 1/4x As 1 + tan^2A = sec^2A tan^2A = sec^2A – 1   Therfore, tan^2A = (x + 1/4x)^2 – 1                                                                        = x^2 + 2*x*1/4x + 1/16x^2 – 1                                                                       = x^2 + 1/2 + 1/16x2 – 1                                                                        = x^2 + 1/16x^2 – 1/2                                                                        = (x – 1/4x)^2 Therefore, tan^2A = x – 1/4x or tan^2A = - (x – 1/4x) Substitute the value of secA and tanA in the given equation secA + tanA LHS = secA + tanA                          = x + 1/4x + x – 1/4x                           = 2x                           = RHS Or LHS = secA + tanA                         =x + 1/4x -x + 1/4x                            = 2/4x                            = 1/2x                          = RHS Hence proved.

one year ago
venkatesh allam
21 Points
							A.   $1+\tan ^{\2\ }\theta =\sec ^{2} \theta$ ;  $1+\cot ^{\2\ }\theta =\csc ^{2} \theta$;  $\sec \theta =1/\cos \theta ; \csc \theta =1/\sin \theta$ ;   $F(X)=6*\cos X\sqrt{\tan ^{\2\ }X\ +1} + 2*\ \sin X\sqrt{\cot ^{\2\ }X\ +1}$$F(X) = 6*\cos X *\sec X + 2*\sin X*\csc X$$F(X) = 6+2=8$ANS: Option 3​B. $\tan \theta +\sec \theta =\sqrt{(X+\frac{1}{4X})^{2}-1}+X+\frac{1}{4X}$Given $\sec \theta = X+\frac{1}{4X}$Substituting $\sec \theta$ value in above equation we get $\tan \theta +\sec \theta =\sqrt{(X+\frac{1}{4X})^{2}-1}+X+\frac{1}{4X}$By slove this equation we get$\tan \theta +\sec \theta =X-\frac{1}{4X}+X+\frac{1}{4X}$$\tan \theta +\sec \theta =2X$ANS: Option 1

one year ago
TEJA KRISHNA
42 Points
							 secA = x + 1/4x As 1 + tan^2A = sec^2A tan^2A = sec^2A – 1   Therfore, tan^2A = (x + 1/4x)^2 – 1                                                                        = x^2 + 2*x*1/4x + 1/16x^2 – 1                                                                       = x^2 + 1/2 + 1/16x2 – 1                                                                        = x^2 + 1/16x^2 – 1/2                                                                        = (x – 1/4x)^2 Therefore, tan^2A = x – 1/4x or tan^2A = - (x – 1/4x) Substitute the value of secA and tanA in the given equation secA + tanA LHS = secA + tanA                          = x + 1/4x + x – 1/4x                           = 2x                           = RHS

9 months ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Trigonometry

View all Questions »

### Course Features

• 731 Video Lectures
• Revision Notes
• Previous Year Papers
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Test paper with Video Solution

### Course Features

• 31 Video Lectures
• Revision Notes
• Test paper with Video Solution
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Previous Year Exam Questions

Post Question