Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

Please provide the solution of question number 29 as soon as possible!

Please provide the solution of question number 29 as soon as possible! 

Question Image
Grade:11

1 Answers

Sami Ullah
46 Points
3 years ago
First        cos\theta =2cos^{2}\frac{\theta}{2}-1
 
So
 
2cos^{2}\frac{\theta}{2}-1=\frac{cos\alpha cos\beta }{1-sin\alpha sin\beta }
2cos^{2}\frac{\theta}{2}=\frac{cos\alpha cos\beta }{1-sin\alpha sin\beta }+1
2cos^{2}\frac{\theta}{2}=\frac{cos\alpha cos\beta-sin\alpha sin\beta+1 }{1-sin\alpha sin\beta }
cos^{2}\frac{\theta}{2}=\frac{cos(\alpha +\beta )+1 }{2+(-2sin\alpha sin\beta )}
cos^{2}\frac{\theta}{2}=\frac{1+cos(\alpha +\beta )}{2+cos(\alpha+\beta )-cos(\alpha -\beta )}
sec^{2}\frac{\theta}{2}=\frac{2+cos(\alpha+\beta )-cos(\alpha -\beta)}{ 1+cos(\alpha +\beta)}
sec^{2}\frac{\theta}{2}-1=\frac{2+cos(\alpha+\beta )-cos(\alpha -\beta)}{ 1+cos(\alpha +\beta)}-1
tan^{2}\frac{\theta}{2}=\frac{2+cos(\alpha+\beta )-cos(\alpha -\beta)-1-cos(\alpha +\beta)}{1+cos(\alpha +\beta) }
tan^{2}\frac{\theta}{2}=\frac{1-cos(\alpha -\beta)}{1+cos(\alpha +\beta) }
tan^{2}\frac{\theta}{2}=\frac{2sin^{2}(\frac{\alpha -\beta }{2})}{2cos^{2}(\frac{\alpha +\beta }{2}) }
Taking square root on both sides.
 
tan\frac{\theta}{2}=\frac{sin(\frac{\alpha -\beta }{2})}{cos(\frac{\alpha +\beta }{2}) }
tan\frac{\theta}{2}=\frac{sin(\frac{\alpha }{2}-\frac{\beta }{2})}{cos(\frac{\alpha }{2}+\frac{\beta }{2}) }
tan\frac{\theta}{2}=\frac{sin\frac{\alpha }{2}cos\frac{\beta }{2}-cos\frac{\alpha }{2}sin\frac{\beta }{2}}{cos\frac{\alpha }{2}cos\frac{\beta }{2}-sin\frac{\alpha }{2}sin\frac{\beta }{2} }
 
Dividing up and down by   cos\frac{\alpha }{2}cos\frac{\beta }{2},So we get ,
 
 
tan\frac{\theta}{2}=\frac{\frac{sin\frac{\alpha }{2}}{cos\frac{\alpha }{2}}-\frac{sin\frac{\beta }{2}}{cos\frac{\beta }{2}}}{1-\frac{sin\frac{\alpha }{2}sin\frac{\beta }{2}}{cos\frac{\alpha }{2}cos\frac{\beta }{2}} }
tan\frac{\theta}{2}=\frac{tan\frac{\alpha }{2}-tan\frac{\beta }{2}}{1-tan\frac{\alpha }{2}tan\frac{\beta }{2}}
 
And you are there.
This was what I could read in the question you posted.I didn’t get what was the whole question about.
Please correct my mistakes (IF ANY).  

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free