Flag Trigonometry> Please answer 14 and 15 question of the i...
question mark

Please answer 14 and 15 question of the image below

Viraj C Bukitagar , 11 Years ago
Grade 10
anser 2 Answers
Jitender Singh
Hello student,
Please find answer to your question
14.
\frac{tanA}{1-cotA} + \frac{cotA}{1-tanA} = secA.cosecA + 1
LHS = \frac{tanA}{1-cotA} + \frac{cotA}{1-tanA}
LHS = \frac{tanA}{1-\frac{1}{tanA}} + \frac{cotA}{1-tanA}
LHS = \frac{tan^{2}A}{tanA-1} + \frac{-cotA}{tanA-1}
LHS = \frac{tan^{2}A-cotA}{tanA-1}
LHS = \frac{tan^{3}A-1}{tanA(tanA-1)}
LHS = \frac{(tanA-1)(tan^{2}A + 1 + tanA)}{tanA(tanA-1)}
LHS = \frac{(tan^{2}A + 1 + tanA)}{tanA}
LHS = tanA + cotA + 1
LHS = \frac{sinA}{cosA} + \frac{cosA}{sinA} + 1
LHS = \frac{sin^{2}A + cos^{2}A}{sinAcosA} + 1
LHS = \frac{1}{sinAcosA} + 1
LHS = secA.cosecA + 1

15.
\frac{cosA}{1-tanA} + \frac{sinA}{1-cotA} = sinA + cosA
LHS = \frac{cosA}{1-tanA} + \frac{sinA}{1-cotA}
LHS = \frac{cosA}{1-tanA} + \frac{sinA}{1-\frac{1}{tanA}}
LHS = \frac{-cosA}{tanA-1} + \frac{tanA.sinA}{tanA-1}
LHS = \frac{sin^{2}A-cos^{2}A}{cosA(tanA-1)}
LHS = \frac{(sinA-cosA)(sinA + cosA)}{(sinA-cosA)}
LHS = sinA + cosA
Last Activity: 11 Years ago
Sher Mohammad
please upload a different image , the questions in the image are not clear, i can’t help you untill you post the questions clearly, please post the questions clearly.
Last Activity: 11 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments