Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

Let α and β be non–zero real numbers such that 2(cos β – cos α ) + cos α cos β = 1. Then which of the following is/are true?

Let α and β be non–zero real numbers such that 2(cosβ – cosα) + cosα cosβ = 1. Then which of the following is/are true?
 

Question Image
Grade:12

1 Answers

Umang Kumar
15 Points
2 years ago
2(cosb-cosa)+cosa.cosb=1
2cosb-2cosa+cosa.cosb=1
cosb(2+cosa)-(2cosa+1)=0
cos\beta =\frac{2cos\alpha +1}{2+cos\alpha }
Now converting cos\beta =\frac{1-tan^{2}\frac{\beta }{2}}{1+tan^{2}\frac{\beta }{2}}
cos\alpha =\frac{1-tan^{2}\frac{\alpha }{2}}{1+tan^{2}\frac{\alpha }{2}}
now equating cosa and cosb in
cos\beta =\frac{2cos\alpha +1}{2+cos\alpha }
we get
\frac{1-tan^{2}\frac{\beta }{2}}{1+tan^{2}\frac{\beta }{2}}=\frac{3-tan^{2}\frac{\alpha }{2}}{3+tan^{2}\frac{\alpha }{2}}
After applying Componendo and dividendo method each side we get:
\frac{2}{-2tan^{2}\frac{\beta }{2}}=\frac{6}{-2tan^{2}\frac{\alpha }{2}}
After solving this we get:
\frac{1}{tan^{2}\frac{\beta }{2}}=\frac{3}{tan^{2}\frac{\alpha }{2}}
After cross multiplying we get:
tan^{2\frac{\alpha }{2}}=3tan^{2\frac{\beta }{2}}
Square root both side:
tan\frac{\alpha }{2}=\pm \sqrt{3}tan\frac{\beta }{2}
hence the answers are:-
1.tan\frac{\alpha }{2}+\sqrt{3}tan\frac{\beta }{2}=0
2.tan\frac{\alpha }{2}-\sqrt{3}tan\frac{\beta }{2}=0
 

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free