Flag Trigonometry> In Triangle ABC, (SIN 2A + SIN 2B + SIN 2...
question mark

In Triangle ABC, (SIN 2A + SIN 2B + SIN 2C) / (COS A + COS B + COS C) -1 =

laxman , 10 Years ago
Grade 11
anser 1 Answers
Nishant Vora

Last Activity: 10 Years ago

Hello student,
Left Hand Side (LHS) = 2 sin A. cos A + 2 sin (B+C). cos (B - C)

=> 2 sin A. cos A + 2 sin (180 - A).cos ( B - C )

=> 2 sin A. cos A + 2 sin A. cos ( B - C )

=> 2 sin A [ cos A + cos ( B- C ) ]

( but cos A = cos { 180 - ( B + C ) } = - cos ( B + C )

=> 2 sin A [ 2 sin B. sin C ]

=> 4. sin A. sin B. sin C

Also
.. LHS

= ( cos A + cos B ) + cos C

= { 2 · cos[ ( A+B) / 2 ] · cos [ ( A-B) / 2 ] } + cos C

= { 2 · cos [ (π/2) - (C/2) ] · cos [ (A-B) / 2 ] } + cos C

= { 2 · sin( C/2 ) · cos [ (A-B) / 2 ] } + { 1 - 2 · sin² ( C/2 ) }

= 1 + 2 sin ( C/2 )· { cos [ (A -B) / 2 ] - sin ( C/2 ) }

= 1 + 2 sin ( C/2 )· { cos [ (A-B) / 2 ] - sin [ (π/2) - ( (A+B)/2 ) ] }

= 1 + 2 sin ( C/2 )· { cos [ (A-B) / 2 ] - cos [ (A+B)/ 2 ] }

= 1 + 2 sin ( C/2 )· 2 sin ( A/2 )· sin( B/2 ) ... ... ... (2)

= 1 + 4 sin(A/2) sin(B/2) sin(C/2)

Now you can simplify further

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments