Flag Trigonometry> In triangle ABC if cosA cosB cosB=1/3 the...
question mark

In triangle ABC if cosA cosB cosB=1/3 then find the value of tanAtanB+tanBtanC+tanCtanA

Mayur Reddy , 9 Years ago
Grade 11
anser 3 Answers
Mayur Reddy
 

Given cosAcosBcosC=1/3

then tanAtanB +tanB tanC+ tanC tanA=sinAsinBcosC +sinBsinCcosA +sinCsinAcosB/cosAcosBcosC

tanAtanB +tanB tanC+ tanC tanA=(sinA sinB cosC +sinB sinC cosA +sinC sinA cosB)/cosA cosB cosC

 

                                               =3 (sinA sinB cosC +sinC [sinB cosA + sinA cosB])

 

                                               =3 (sinA sinB cosC +sinC [sin(A+B)])

 

                                               =3 (sinA sinB cosC +sin2C )

 

                                               =3 (sinA sinB cosC +1-cos2C )

 

                                               =3 (1+cosC{-cosC+sinA sinB } )

 

                                               =3 (1+cosC cosA cosB  )

 

                                               =3 (1+1/3 )

                                               =3 (4/3)

                                               =4

Last Activity: 9 Years ago
Vedit
tanAtanB+ tanBtanC+ tanCtanA=1+ secAsecBsecC
SsecAsecBsecC=3
Therefore,tanAtanB+ tanBtanC+ tanCtanA=1+3 =4
Last Activity: 8 Years ago
Ravi Babu Duvvuru
A+B+C=180
B+C=180-A
Sin(B+C)=sin(180-A)
Sin(B+C)= sinA
TanA-TanB-TanC=TanA -[sinB/cosB +sin C/cos C]
Tan A- [sinB cos C+sin C cosB /cosB cos C]
Tan A- sin(B+C)/cosA
TanA -Tan A=0
Last Activity: 4 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments