Flag Trigonometry> In a triangle ABC, prove that a 3 cos(B-C...
question mark

In a triangle ABC, prove that a3cos(B-C)+b3cos(C-A)+c3cos(A-B) = 3abc

Satviki Pathak , 10 Years ago
Grade 11
anser 1 Answers
Lab Bhattacharjee
As a=2R sinA,   sin A=sin{pi-(B+C)}=sin(B+C)
 
a^3cos(B-C)= a^2 2RsinA\cos(B-C)=a^2R[2sin(B+C)cos(B-C)]
 
=a^2R[sin2B+sin2C]=a^2[2RsinB cosB+2R sinC cosC ]=a^2[b cosB+c cos C]
 
=\sum a^3\cos(B-C)=\sum(a^2 b \cos B+ ab^2 \cos A)=\sum ab(a\cos B+b\cos A)=\sum ab(c)
 
 
Last Activity: 10 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments