Lab Bhattacharjee
Last Activity: 9 Years ago
We are given a triangle ABC where:
Angle B = 30°
Side c = √3 * b
We need to determine the possible value(s) of angle A.
Step 1: Use the Sine Rule
The Sine Rule states:
a / sin A = b / sin B = c / sin C
Substituting the given values:
b / sin 30° = (√3 * b) / sin C
Since sin 30° = 1/2, we get:
b / (1/2) = (√3 * b) / sin C
=> 2b = (√3 * b) / sin C
Dividing both sides by b (assuming b ≠ 0):
2 = (√3 / sin C)
Step 2: Solve for sin C
Rearranging for sin C:
sin C = √3 / 2
We know that sin 60° = √3 / 2, so:
C = 60°
Step 3: Find A using Angle Sum Property
In a triangle, the sum of angles is always 180°:
A + B + C = 180°
A + 30° + 60° = 180°
A = 180° - 90°
A = 90°
Conclusion
Thus, the possible value of A is 90°.