Learn to Create a Robotic Device Using Arduino in the Free Webinar. Register Now
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-1023-196
+91-120-4616500
CART 0
Use Coupon: CART20 and get 20% off on all online Study Material
Welcome User
OR
LOGIN
Complete Your Registration (Step 2 of 2 )
Free webinar on Robotics (Block Chain) Learn to create a Robotic Device Using Arduino
30th Jan @ 5:00PM for Grade 1 to 10
If tanA=2(x+1)/2x+1 find sinA and cosA in terms of x If tanA=2(x+1)/2x+1 find sinA and cosA in terms of x
tanA = 2x(x+1) / 2x+1 ---- given sec^2 A = 1+ tan^2 A --- identity. sec^2 A = 1 + [4x^2(x+1)^2] / (2x+1)^2 = [(2x+1)^2 + 4x^2(x+1)^2] / (2x+1)^2 = [4x^4 + 8x^3 + 8x^2 + 4x +1 ] / (2x+1)^2 = (2x^2 + 2x + 1)^2 / (2x+1)^2 This gives --secA = (2x^2 + 2x + 1) / (2x + 1) So cosA = 1/secA = (2x + 1) / (2x^2 + 2x + 1) --------- [1] Now sin^2 A = (1 - cos^2 A ) = 1 - (2x+1)^2 / (2x^2 + 2x + 1)^2 = [(2x^2 + 2x + 1)^2 - (2x+1)^2] / (2x^2 + 2x + 1)^2 = (2x^2)*(2x^2 + 4x + 2 ) / (2x^2 + 2x + 1)^2 ---- using [a^2-b^2 =(a+b)*(a-b) ] = (4x^2)*(x^2+2x+1) / (2x^2 + 2x + 1)^2 = [(2x )* (x+1)]^2 / (2x^2 + 2x + 1)^2 This gives sinA = (2x )* (x+1) / (2x^2 +2x +1) --------- [2]
Post Question
Dear , Preparing for entrance exams? Register yourself for the free demo class from askiitians.
points won -