 ×     #### Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Click to Chat

1800-1023-196

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
```
If tanA=2(x+1)/2x+1 find sinA and cosA in terms of x

```
2 years ago

```							tanA = 2x(x+1) / 2x+1 ---- given sec^2 A = 1+ tan^2 A --- identity. sec^2 A = 1 + [4x^2(x+1)^2] / (2x+1)^2 = [(2x+1)^2 + 4x^2(x+1)^2] / (2x+1)^2 = [4x^4 + 8x^3 + 8x^2 + 4x +1 ] / (2x+1)^2 = (2x^2 + 2x + 1)^2 / (2x+1)^2 This gives --secA = (2x^2 + 2x + 1) / (2x + 1) So cosA = 1/secA = (2x + 1) / (2x^2 + 2x + 1) ---------  Now sin^2 A = (1 - cos^2 A ) = 1 - (2x+1)^2 / (2x^2 + 2x + 1)^2 = [(2x^2 + 2x + 1)^2 - (2x+1)^2] / (2x^2 + 2x + 1)^2 = (2x^2)*(2x^2 + 4x + 2 ) / (2x^2 + 2x + 1)^2 ---- using [a^2-b^2 =(a+b)*(a-b) ] = (4x^2)*(x^2+2x+1) / (2x^2 + 2x + 1)^2 = [(2x )* (x+1)]^2 / (2x^2 + 2x + 1)^2 This gives sinA = (2x )* (x+1) / (2x^2 +2x +1) --------- 
```
2 years ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Trigonometry

View all Questions »  ### Course Features

• 731 Video Lectures
• Revision Notes
• Previous Year Papers
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Test paper with Video Solution  ### Course Features

• 31 Video Lectures
• Revision Notes
• Test paper with Video Solution
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Previous Year Exam Questions