Flag Trigonometry> If tan (x+y) = a+b and tan (x-y) = a-b Th...
question mark

If tan (x+y) = a+b and tan (x-y) = a-b Then prove that a tan x - b tan y = a^2 - b^2

Tapas Ghosh , 7 Years ago
Grade 11
anser 1 Answers
somi teez

Last Activity: 7 Years ago

hi,
 first we will try to bring it in form a^2-b^2.
 tan (x+y) tan (x-y) = (a+b)*(a-b)
using formula,=(tan^2x-tan^2y)/(1-tan^2x*tan^2y)=a^2-b^2................(1)
now,
 tan (x+y)+tan(x-y)=a+b+a-b=2a.....................................................(2)
=(tan x+tan y)/(1-tan x*tan y) + (tan x-tan y)/(1+tan x*tan y)=2a
taking l.c.m and then evaluating,
=2(tan x+tan x*tan^2y)/(1-tan^2x*tan^2y)=2a
(2 cancels on both sides)
and multiplying both sides by tan x we get,
a tan x=(tan^2 x+tan^2 x*tan^2y)/(1-tan^2x*tan^2y)........................(3)
now,   tan (x+y)-tan(x-y)=a+b-a+b=2b
then as above proceeding we get ,
b tan y=(tan^2 y+tan^2 x*tan^2y)/(1-tan^2x*tan^2y)........................(4)
evaluating a tan x - b tan y =(tan^2x-tan^2y)/(1-tan^2x*tan^2y)=a^2-b^2.....(using eqation 1)
HENCE,PROVED... 
 

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...