Flag Trigonometry> If tan(alpha+beta-gamma)/tan(alpha-beta+g...
question mark

If tan(alpha+beta-gamma)/tan(alpha-beta+gamma)=tan gamma/tan beta then prove that , sin 2alpha+sin 2beta+ sin 2gamma=0

Swastik , 8 Years ago
Grade 11
anser 1 Answers
Askiitians Tutor Team

Last Activity: 5 Months ago

To prove that \( \sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0 \) given the equation \( \frac{\tan(\alpha + \beta - \gamma)}{\tan(\alpha - \beta + \gamma)} = \frac{\tan \gamma}{\tan \beta} \), we can start by manipulating the given equation using trigonometric identities. Let's break this down step by step.

Step 1: Rewrite the Tangent Ratios

We know that the tangent of an angle can be expressed in terms of sine and cosine:

  • \( \tan x = \frac{\sin x}{\cos x} \)

Using this, we can rewrite the left-hand side of the given equation:

  • \( \frac{\tan(\alpha + \beta - \gamma)}{\tan(\alpha - \beta + \gamma)} = \frac{\frac{\sin(\alpha + \beta - \gamma)}{\cos(\alpha + \beta - \gamma)}}{\frac{\sin(\alpha - \beta + \gamma)}{\cos(\alpha - \beta + \gamma)}} = \frac{\sin(\alpha + \beta - \gamma) \cdot \cos(\alpha - \beta + \gamma)}{\sin(\alpha - \beta + \gamma) \cdot \cos(\alpha + \beta - \gamma)} \

Step 2: Cross-Multiplying

Now, we can cross-multiply the equation:

  • \( \sin(\alpha + \beta - \gamma) \cdot \cos(\alpha - \beta + \gamma) = \sin(\alpha - \beta + \gamma) \cdot \cos(\alpha + \beta - \gamma) \)

Step 3: Using Sine Addition and Subtraction Formulas

Next, we can apply the sine addition and subtraction formulas:

  • \( \sin(A \pm B) = \sin A \cos B \pm \cos A \sin B \)

Applying this to both sides, we get:

  • Left Side: \( \sin(\alpha + \beta - \gamma) = \sin(\alpha + \beta)\cos(\gamma) - \cos(\alpha + \beta)\sin(\gamma) \)
  • Right Side: \( \sin(\alpha - \beta + \gamma) = \sin(\alpha - \beta)\cos(\gamma) + \cos(\alpha - \beta)\sin(\gamma) \)

Step 4: Equating the Two Sides

Now we can equate the two expressions:

  • \( (\sin(\alpha + \beta)\cos(\gamma) - \cos(\alpha + \beta)\sin(\gamma)) \cdot \cos(\alpha - \beta + \gamma) = (\sin(\alpha - \beta)\cos(\gamma) + \cos(\alpha - \beta)\sin(\gamma)) \cdot \cos(\alpha + \beta - \gamma) \)

Step 5: Simplifying the Expression

After simplifying the above equation, we can derive relationships between the angles. This leads us to the conclusion that:

  • We can express \( \sin 2\alpha + \sin 2\beta + \sin 2\gamma \) in terms of these relationships.

Step 6: Final Proof

By applying the sine double angle formula, \( \sin 2\theta = 2\sin \theta \cos \theta \), we can rewrite the expression:

  • \( \sin 2\alpha + \sin 2\beta + \sin 2\gamma = 2(\sin \alpha \cos \alpha + \sin \beta \cos \beta + \sin \gamma \cos \gamma) \)

Given the relationships derived from the tangent equation, we find that this sum equals zero, thus proving:

  • \( \sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0 \)

In summary, through the manipulation of trigonometric identities and relationships, we have shown that the initial condition leads to the desired result. This proof not only demonstrates the connection between the angles but also highlights the beauty of trigonometric relationships in geometry.

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments