Sripad Sambrani
Last Activity: 5 Years ago
Given : sinx+sin^2x = 1
RTF : cos^12x+3cos^10x+3cos^8x+cos^6x-2
Solution :
sinx=1-sin^2x [given] => sinx=cos^2x
Hence, cos^12x=sin^6x; cos^10x=sin^5x; cos^8x=sin^4x; cos^6x=sin^3x
Substitute the above values in required expression
sin^6x+3sin^5x+3sin^4x+sin^3x-2
= (sin^2x)^3+3*(sin^2x)^2*(sinx)+3*(sin^2x)*(sinx)^2+(sinx)^3-2
= (sin^2x+sin^x)^3-2 [since, a^3+3*(a^2)*(b)+3*(a)*(b^2)+b^3 = (a+b)^3]
= (1)^3-2 [given: sin^2x+sin^x=1]
= 1-2 = -1