MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade: 11
        
If sinasinb-cosacosb +1=0 prove that 1+cota tanb=0
4 years ago

Answers : (4)

Akshay
185 Points
							
Hint: use sina*sinb= ½ * (cos(a-b) – cos(a+b)),
and cosa*cosb = ½ * (cos(a-b) + cos(a+b)),
simplify and you will get,  a + b = 2n*pi,
just put in second equation
4 years ago
Akhil Chinnu
44 Points
							
sinasinb-cosacosb=-1
so,cos(a+b)=-1
so,a+b=180 or a=180-b
  1+tanbcota
1+tanb/tana
(tana+tanb)/tana
(tan(180-b)+tanb)/tana
(-tanb+tanb)/tana
=0
Hence proved.
4 years ago
Mohammed Tameem Mohiuddin
10 Points
							
thanks bro
 
4 years ago
Tanu
13 Points
							
SinA. SinB - cosA. CosB + 1 = 0
-{cos(A+B)} = -1
Cos(A+B) =1
Let A+B be x
Then cosx=1
x=0
A+B =0
ie Sin(A+B)=0
= sinAcosB + CosASinB =0
Dividing above equation by cosAcosB, we get
TanA+ tanB=0
TanB= - tanA.        (1)
 
Now we need to prove.. 1+ cotAtanB=0
So LHS = 1 + cotA(-tanA)    ( from (1))
= 1- cotAtanA
=1-1=0=RHS
one year ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 31 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details