Askiitians Tutor Team
Last Activity: 27 Days ago
To demonstrate that given that and , we first need to understand what the notation means. The term is shorthand for . This representation allows us to work with complex numbers in a more manageable way.
Step-by-Step Breakdown
Let's start by substituting the definitions of and into our expression:
We have:
p = \cos(\theta) + i\sin(\theta)
q = \cos(\phi) + i\sin(\phi)
Now, we can compute and :
p - q = (\cos(\theta) - \cos(\phi)) + i(\sin(\theta) - \sin(\phi))
p + q = (\cos(\theta) + \cos(\phi)) + i(\sin(\theta) + \sin(\phi))
Forming the Quotient
Next, we need to find the quotient :
\frac{p - q}{p + q} = \frac{(\cos(\theta) - \cos(\phi)) + i(\sin(\theta) - \sin(\phi)}{(\cos(\theta) + \cos(\phi)) + i(\sin(\theta) + \sin(\phi))}
Using Trigonometric Identities
To simplify this expression, we can use the trigonometric identities for the difference and sum of angles:
- Difference of Cosines:
- Difference of Sines:
- Sum of Cosines:
- Sum of Sines:
Substituting Back
Now, substituting these identities back into our quotient:
\frac{p - q}{p + q} = \frac{-2\sin\left(\frac{\theta + \phi}{2}\right)\sin\left(\frac{\theta - \phi}{2}\right) + i \cdot 2\cos\left(\frac{\theta + \phi}{2}\right)\sin\left(\frac{\theta - \phi}{2}\right)}{2\cos\left(\frac{\theta + \phi}{2}\right)\cos\left(\frac{\theta - \phi}{2}\right) + i \cdot 2\sin\left(\frac{\theta + \phi}{2}\right)\cos\left(\frac{\theta - \phi}{2}\right)}
We can simplify this by canceling the common factor of 2:
\frac{-\sin\left(\frac{\theta + \phi}{2}\right)\sin\left(\frac{\theta - \phi}{2}\right) + i \cdot \cos\left(\frac{\theta + \phi}{2}\right)\sin\left(\frac{\theta - \phi}{2}\right)}{\cos\left(\frac{\theta + \phi}{2}\right)\cos\left(\frac{\theta - \phi}{2}\right) + i \cdot \sin\left(\frac{\theta + \phi}{2}\right)\cos\left(\frac{\theta - \phi}{2}\right)}
Final Simplification
Now, we can factor out from the numerator:
\frac{\sin\left(\frac{\theta - \phi}{2}\right)\left(-\sin\left(\frac{\theta + \phi}{2}\right) + i \cdot \cos\left(\frac{\theta + \phi}{2}\right)\right)}{\cos\left(\frac{\theta - \phi}{2}\right)\left(\cos\left(\frac{\theta + \phi}{2}\right) + i \cdot \sin\left(\frac{\theta + \phi}{2}\right)\right)}
Recognizing that the expression in the numerator can be rewritten as times the tangent function, we arrive at:
\frac{p - q}{p + q} = i \tan\left(\frac{\theta - \phi}{2}\right)
Conclusion
This completes the proof that . By utilizing trigonometric identities and simplifying the complex expressions, we can see how the relationship holds true. This approach not only illustrates the power of complex numbers but also highlights the beauty of trigonometric relationships.