Flag Trigonometry> If p=cis theta and q= cis phi, show that ...
question mark

If p=cis theta and q= cis phi, show that
p-q/p+q=i tan ((theta-phi)/2)

Pronit , 4 Years ago
Grade 12th pass
anser 1 Answers
Askiitians Tutor Team

Last Activity: 27 Days ago

To demonstrate that pqp+q=itan(θϕ2) given that p=cis(θ) and q=cis(ϕ), we first need to understand what the notation cis(θ) means. The term cis(θ) is shorthand for cos(θ)+isin(θ). This representation allows us to work with complex numbers in a more manageable way.

Step-by-Step Breakdown

Let's start by substituting the definitions of p and q into our expression:

  • Substituting p and q:

We have:

p = \cos(\theta) + i\sin(\theta)

q = \cos(\phi) + i\sin(\phi)

Now, we can compute pq and p+q:

  • Calculating pq:

p - q = (\cos(\theta) - \cos(\phi)) + i(\sin(\theta) - \sin(\phi))

  • Calculating p+q:

p + q = (\cos(\theta) + \cos(\phi)) + i(\sin(\theta) + \sin(\phi))

Forming the Quotient

Next, we need to find the quotient pqp+q:

\frac{p - q}{p + q} = \frac{(\cos(\theta) - \cos(\phi)) + i(\sin(\theta) - \sin(\phi)}{(\cos(\theta) + \cos(\phi)) + i(\sin(\theta) + \sin(\phi))}

Using Trigonometric Identities

To simplify this expression, we can use the trigonometric identities for the difference and sum of angles:

  • Difference of Cosines: cos(θ)cos(ϕ)=2sin(θ+ϕ2)sin(θϕ2)
  • Difference of Sines: sin(θ)sin(ϕ)=2cos(θ+ϕ2)sin(θϕ2)
  • Sum of Cosines: cos(θ)+cos(ϕ)=2cos(θ+ϕ2)cos(θϕ2)
  • Sum of Sines: sin(θ)+sin(ϕ)=2sin(θ+ϕ2)cos(θϕ2)

Substituting Back

Now, substituting these identities back into our quotient:

\frac{p - q}{p + q} = \frac{-2\sin\left(\frac{\theta + \phi}{2}\right)\sin\left(\frac{\theta - \phi}{2}\right) + i \cdot 2\cos\left(\frac{\theta + \phi}{2}\right)\sin\left(\frac{\theta - \phi}{2}\right)}{2\cos\left(\frac{\theta + \phi}{2}\right)\cos\left(\frac{\theta - \phi}{2}\right) + i \cdot 2\sin\left(\frac{\theta + \phi}{2}\right)\cos\left(\frac{\theta - \phi}{2}\right)}

We can simplify this by canceling the common factor of 2:

\frac{-\sin\left(\frac{\theta + \phi}{2}\right)\sin\left(\frac{\theta - \phi}{2}\right) + i \cdot \cos\left(\frac{\theta + \phi}{2}\right)\sin\left(\frac{\theta - \phi}{2}\right)}{\cos\left(\frac{\theta + \phi}{2}\right)\cos\left(\frac{\theta - \phi}{2}\right) + i \cdot \sin\left(\frac{\theta + \phi}{2}\right)\cos\left(\frac{\theta - \phi}{2}\right)}

Final Simplification

Now, we can factor out sin(θϕ2) from the numerator:

\frac{\sin\left(\frac{\theta - \phi}{2}\right)\left(-\sin\left(\frac{\theta + \phi}{2}\right) + i \cdot \cos\left(\frac{\theta + \phi}{2}\right)\right)}{\cos\left(\frac{\theta - \phi}{2}\right)\left(\cos\left(\frac{\theta + \phi}{2}\right) + i \cdot \sin\left(\frac{\theta + \phi}{2}\right)\right)}

Recognizing that the expression in the numerator can be rewritten as i times the tangent function, we arrive at:

\frac{p - q}{p + q} = i \tan\left(\frac{\theta - \phi}{2}\right)

Conclusion

This completes the proof that pqp+q=itan(θϕ2). By utilizing trigonometric identities and simplifying the complex expressions, we can see how the relationship holds true. This approach not only illustrates the power of complex numbers but also highlights the beauty of trigonometric relationships.

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments