Flag Trigonometry> if cosA/cosB = n, sinA/sinB = m, show tha...
question mark

if cosA/cosB = n, sinA/sinB = m, show that : (m^2 - n^2)sin^2 B = 1-n^2

rahul , 8 Years ago
Grade 11
anser 1 Answers
Saurabh Koranglekar

We are given the equations:

cosA / cosB = n
sinA / sinB = m

We need to prove that:

(m² - n²) sin² B = 1 - n²

Step 1: Expressing sinA and cosA in terms of B
From the given equations:

cosA = n cosB
sinA = m sinB

Since we know that:

sin²A + cos²A = 1

Substituting the values of sinA and cosA:

(m sinB)² + (n cosB)² = 1

Step 2: Expanding the Equation
Expanding the squares:

m² sin² B + n² cos² B = 1

Rearrange the terms:

m² sin² B = 1 - n² cos² B

Using the identity cos² B = 1 - sin² B, substitute:

m² sin² B = 1 - n²(1 - sin² B)

Expanding:

m² sin² B = 1 - n² + n² sin² B

Step 3: Isolating the Required Expression
Rearrange the equation:

m² sin² B - n² sin² B = 1 - n²

Factor sin² B from the left-hand side:

(m² - n²) sin² B = 1 - n²

Conclusion:
Thus, we have successfully shown that:

(m² - n²) sin² B = 1 - n²

Last Activity: 6 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments