We are given the equations:
cosA / cosB = n
sinA / sinB = m
We need to prove that:
(m² - n²) sin² B = 1 - n²
Step 1: Expressing sinA and cosA in terms of B
From the given equations:
cosA = n cosB
sinA = m sinB
Since we know that:
sin²A + cos²A = 1
Substituting the values of sinA and cosA:
(m sinB)² + (n cosB)² = 1
Step 2: Expanding the Equation
Expanding the squares:
m² sin² B + n² cos² B = 1
Rearrange the terms:
m² sin² B = 1 - n² cos² B
Using the identity cos² B = 1 - sin² B, substitute:
m² sin² B = 1 - n²(1 - sin² B)
Expanding:
m² sin² B = 1 - n² + n² sin² B
Step 3: Isolating the Required Expression
Rearrange the equation:
m² sin² B - n² sin² B = 1 - n²
Factor sin² B from the left-hand side:
(m² - n²) sin² B = 1 - n²
Conclusion:
Thus, we have successfully shown that:
(m² - n²) sin² B = 1 - n²