Flag Trigonometry> If A+B+C = π then prove that cos 2A + cos...
question mark

If A+B+C = π then prove that cos 2A + cos 2B - cos 2C =1-4sinAsinBcosC

twisha , 7 Years ago
Grade 12th pass
anser 1 Answers
Arun

Last Activity: 7 Years ago

cos2A + cos2B - cos2C 

= cos2A - 2sin[( 2B + 2C)/2]sin[(2B - 2C)/2] 

= cos2A - 2sin( B + C )sin(B - C) 

We have : A + B + C = 180° => B + C = 180° - A 

= cos2A - 2sin( 180° - A )sin(B - C) 

= cos2A - 2( sin180°cosA - sinAcos180° )sin( B - C ) 

= cos2A + 2sinAsin(B - C) 

= 1 - 2sin²A + 2sinAsin(B - C) 

= 1 - 2sinA[ sinA - sin(B - C) ] 

= 1 - 2sinA( 2cos[(A + B - C)/2]sin[(A - B + C)/2] ) 

= 1 - 4sinA.cos( A + B - C )/2.sin(A - B + C ) /2 

We have : A + B + C = 180° => A + B = 180° - C 
And : A + C = 180° - B 

= 1 - 4sinA.cos[( 180° - C - C )/2].sin[( 180° - B - B )/2] 

= 1 - 4sinA.cos( -2C )/2.sin( -2B)/2 

= 1 - 4sinA.cos(-C).sin(-B) 

= 1 - 4sinA.sinB.cosC 

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free