MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade: 11
        
if A+B+C=pi and A,B,,C are acute angles then prove that tanA+tanB+tanC>=33/2
2 years ago

Answers : (1)

Arun
22985 Points
							
Using A.M. > = G.M.
(tanA + tanB + tanC)/3 >= (tanA.tanB.tanC)^(1/3)
=> tanA + tanB + tanC >= 3*(tanA + tanB + tanC)^(1/3)...
(since in triangle sum of tangents of angles is equal to product of tangents)
=> tanA + tanB + tanC >= 3(3)^(1/2)
tanA + tanB + tanC = 3(3)^(1/2) implies
A.M. = G.M. and this means tanA = tanB = tanC
=> A =B =C and hence triangle is equilateral,
 
If we take triangle as equilateral;
then all the angles are 60 degree, then tanA+ tanB + tanC = 3(3)^(1/2)
 
Regards
Arun (askIITians forum expert)
2 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 31 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details