Flag Trigonometry> If 15tan^2+4sec^2=23,then find (sec+cosec...
question mark

If 15tan^2+4sec^2=23,then find (sec+cosec)^2-sin^2

AMRUTHA , 11 Years ago
Grade
anser 4 Answers
Sunil Raikwar
15tan^2 x +4(tan^2 x+1)=23
= 19tan^2 x +4 = 23
= 19tan^2 x = 19
= tan^2 x =1
= tanx= 1
therefore
secx=root2
cosecx=root2
sinx=1/root2

(secx+cosecx)^2-sin^2 x =(2root2)^2-1/2=8-1/2=15/2


Last Activity: 11 Years ago
Paramjeet Singh Khalsa
15 tan²∅ + 4 sec ²∅ = 23 [ tan²∅ = sec²∅ - 1 ]15 [ sec²∅ - 1 ] + 4 sec ²∅ = 2315 sec²∅ - 15 + 4 sec²∅ = 2315 sec²∅ + 4 sec²∅ = 23 + 1519 sec²∅ = 38sec²∅ = 38/19sec²∅ = 2sec∅ = √2 { sec 45° = √2 }sec∅ = sec 45°∅ = 45°( sec 45° + cosec 45° )² - sin² 45°( √2 + √2 )² - ( 1/√2 )²( 2√2 )² - 1/28 - 1/2 = 8 - 0.5 = 7.5
Last Activity: 7 Years ago
Paramjeet Singh Khalsa
15 tan²∅ + 4 sec ²∅ = 23. [ tan²∅ = sec²∅ - 1 ]. 15 [ sec²∅ - 1 ] + 4 sec ²∅ = 23. 15 sec²∅ - 15 + 4 sec²∅ = 23. 15 sec²∅ + 4 sec²∅ = 23 + 15. 19 sec²∅ = 38. sec²∅ = 38/19. sec²∅ = 2. sec∅ = √2. { sec 45° = √2 }. sec∅ = sec 45°. ∅ = 45°. ( sec 45° + cosec 45° )² - sin² 45°. ( √2 + √2 )² - ( 1/√2 )². ( 2√2 )² - 1/2. 8 - 1/2 = 8 - 0.5 = 7.5.
Last Activity: 7 Years ago
Rishi Sharma
Dear Student,
Please find below the solution to your problem.

15tan^2 + 4sec^2 = 23
15tan^2 x + 4(tan^2 x+1)=23
19tan^2 x + 4 = 23
19tan^2 x = 19
tan^2 x =1
tanx = 1
therefore sec x = root2
cosec x = root2
sinx = 1/root2
(secx+cosecx)^2-sin^2 x
(2root2)^2-1/2
8-1/2
15/2

Thanks and Regards
Last Activity: 5 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments