Click to Chat
1800-2000-838
+91-120-4616500
CART 0
Use Coupon: CART20 and get 20% off on all online Study Material
Welcome User
OR
LOGIN
Complete Your Registration (Step 2 of 2 )
I didn't understand how to solve this question... .
this ques merely looks difficult but is easy, and is a direct application of LAGRANGES MEAN VALUR THEOREM.let mu=u and lambda=mnote that ∫xf”(x)dx= xf’(x) – f(x) [integration by parts]so ∫xf”(x)dx from a to b= bf’(b) – f(b) – [af’(a) – f(a)] = bf’(b) – af’(a)+f(a) – f(b) =LHS.......(1)Now consider the following functions:g(x)= xf’(x) and h(x)= f(x) [note that g’(x)= f’(x)+xf”(x) and h’(x)= f’(x)]applying LMVT on both we have[g(b)–g(a)]/(b-a)=g’(u) for some u in (a,b) and [h(b)–h(a)]/(b-a)=h’(m) for some m in (a,b)bf’(b)–af’(a)=(b-a)[f’(u)+uf”(u)].....(2)and f(b)-f(a)=(b-a)f’(m).....(3)subtracting 3 from 2bf’(b)–af’(a) – f(b)+f(a)= (b-a)[f’(u)+uf”(u) – f’(m)]from 1,LHS=(b-a)[f’(u)+uf”(u) – f’(m)]note that ∫f”(x)dx from m to u= f’(u) – f’(m)so thatLHS=(b-a)[∫f”(x)dx from m to u+uf”(u)]
sorry i answered the wrong ques.we use formula tan^2a=(1-cos2a)/(1+cos2a)tan^(pi/16)+tan^2(7pi/16)+tan^(2pi/16)+tan^2(6pi/16)+tan^2(3pi/16)+tan^2(5pi/16)+tan^(4pi/16)tan^(pi/16)+tan^2(pi/2-pi/16)+tan^2(2pi/16)+tan^2(pi/2-2pi/16)+tan^2(3pi/16)+tan^2(pi/2-3pi/16)+tan^2(pi/4)tan^2(pi/16)+cot^2(pi/16)+tan^2(2pi/16)+cot^2(2pi/16)+tan^2(3pi/16)+cot^2(3pi/16)+1we use formulatan^2a+cot^2a=(1-cos2a)/(1+cos2a)+(1+cos2a)/(1-cos2a)=2(1+cos^2(2a))/sin^2(2a))2(1+cos^2(pi/8))/sin^2(pi/8) +2(1+cos^2(pi/4))/sin^2(pi/4) +2(1+cos^2(3pi/8))/sin^2(3pi/8) +12(cosec^2(pi/8)+cot^2(pi/8)+cosec^2(3pi/8)+cot^2(3pi/8)+2(1+1/2)/(1/2) +12(1+2cot^2(pi/8)+1+2cot^2(3pi/8))+6+14+6+1+4(cot^2(pi/8)+cot^2(3pi/8))11+4{(1+cospi/4)/(1-cos(pi/4)) + (1+cos(3pi/4))/(1-cos(3pi/4)}11+4{(1+1/sqrt2)/(1-1/sqrt2) +(1-1/sqrt2)/(1+1/sqrt2)}11+4{2*3/2)/(1/2)11+4(6)11+2435 Ans.
Post Question
Dear , Preparing for entrance exams? Register yourself for the free demo class from askiitians.
points won -