Flag Trigonometry> Find the value of x between 0 and 2 pi sa...
question mark

Find the value of x between 0 and 2 pi satisfying Cos3x + cos2x = sin 3x/2 + sin x/2

Shefali , 6 Years ago
Grade 11
anser 3 Answers
Deepak Kumar Shringi

Last Activity: 6 Years ago

562-825_Capture.PNG

Aarushi Ahlawat

Last Activity: 6 Years ago

First convert both the sides in multiplication form and then take common to get two factors. Now find the solutions for each of the factor over the given domain
.
cos(3x)+cos(2x)=sin\left ( \frac{3x}{2} \right )+sin\left ( \frac{x}{2} \right )
2cos\left ( \frac{3x+2x}{2} \right )cos\left ( \frac{3x-2x}{2} \right )=2sin\left ( \frac{\frac{3x}{2}+\frac{x}{2}}{2} \right )cos\left ( \frac{\frac{3x}{2}-\frac{x}{2}}{2} \right )
 
cos\left ( \frac{5x}{2} \right )cos\left ( \frac{x}{2} \right )=sin\left ( x \right )cos\left ( \frac{x}{2} \right )
cos\left ( \frac{x}{2} \right ) \left ( cos\left ( \frac{5x}{2} \right )- sin\left ( x \right ) \right )=0
cos\left ( \frac{x}{2} \right ) \left ( cos\left ( \frac{5x}{2} \right )- cos\left (\frac{\pi }{2} - x \right ) \right )=0
OR
cos\left ( \frac{x}{2} \right ) \left ( cos\left ( \frac{5x}{2} \right )- cos\left (\frac{3 \pi }{2} + x \right ) \right )=0
Now the solutions:
If
 
cos\left ( \frac{x}{2} \right ) = 0
x=\pi
 
if
cos\left ( \frac{5x}{2} \right )-cos\left ( \frac{\pi}{2}-x \right )=0
x=\frac{\pi}{7}
and if
 
cos\left ( \frac{5x}{2} \right )-cos\left ( \frac{3\pi}{2}+x \right )=0
 
x=\pi
 
Hence possible values of x between 0 and 2pi are   
 
\frac{\pi}{7} ~ and ~ \pi
 
 
 

Aarushi Ahlawat

Last Activity: 6 Years ago

Above mentioned general solution in answer 1 are not correct for all values of n and for + and -.
 
All the solution between 0 and 2pi are pi/7, 5pi/7, pi, 9pi/7 and 13pi/7 only. 
 
One must consider the validity conversion of sin(x) term to cos in last step. It must remain valid for both the cases instead of only for cos cases. Hence half of general solution for cos will not be correct solutions. 
 
Validate yourself for so obtained solutions.

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...