Flag Trigonometry> Find the value of angle A in the followin...
question mark

Find the value of angle A in the following equationcos 2A =cos 60°×cos 30°

Rahul , 7 Years ago
Grade 10
anser 2 Answers
Ravi malvia

Last Activity: 7 Years ago

Cos2A=(√3÷2)×(1÷2)Cos2A= √3÷42CossqureA-1=√3÷42CossqureA=(√3÷4)+1CossqureA=(1÷2)[(√3÷4)+1]CossqureA=(√3÷8)+(1÷2)A=cosinverse[(√3÷8)+(1÷2)]

Arun

Last Activity: 7 Years ago

cos 2A = cos 60°×cos 30°
           =\frac{1}{2}\times\frac{\sqrt{3}}{2}
          =\frac{1}{2}\times\frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4}=\frac{1}{2}\times\frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4} \implies 2A=cos^{-1}(\frac{\sqrt{3}}{4})=\frac{1}{2}\times\frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4} \implies 2A=cos^{-1}(\frac{\sqrt{3}}{4}) \implies A=\frac{1}{2} cos^{-1}(\frac{\sqrt{3}}{4})
and A=\frac{1}{2}\times\frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4} \implies 2A=cos^{-1}(\frac{\sqrt{3}}{4}) \implies A=\frac{1}{2} cos^{-1}(\frac{\sqrt{3}}{4}) A= \frac{64.34^{\circ}}{2}=32.17^{\circ}=\frac{1}{2}\times\frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4} \implies 2A=cos^{-1}(\frac{\sqrt{3}}{4}) \implies A=\frac{1}{2} cos^{-1}(\frac{\sqrt{3}}{4}) A= \frac{64.34^{\circ}}{2}=32.17^{\circ}=\frac{1}{2}\times\frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4} \implies 2A=cos^{-1}(\frac{\sqrt{3}}{4}) \implies A=\frac{1}{2} cos^{-1}(\frac{\sqrt{3}}{4}) cos^{-1}(\frac{\sqrt{3}}{4})= 64.34^{\circ}
So the concept is of inverse trigonometric .It is so simple ,there is one thing in this question which generally not being asked in exam is the values of cos other than 0, 30,45,60,90 

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...