Flag Trigonometry> Find maximum and minimum value for cos^2x...
question mark

Find maximum and minimum value for cos^2x-6sinxcosx+3 sin^2x+2.

Leafyrito , 9 Years ago
Grade 10
anser 2 Answers
Himanshu
Cos2x = (1 + cos2x) / 2
Sin2x = (1 – cos2x) / 2
2sinx.cosx = sin2x
Hence, now your equation can be written as:-
=(1 + cos2x) / 2 – 3sin2x + 3(1 – cos2x) / 2 + 2
=(1/2 – 3/2)cos2x – 3sin2x +4
= – cos2x – 3sin2x +4
Now, Minimum value = – [(-1)2 + (-3)2]1/2 + 4 = 4 – 101/2
Also, Maximum value = [(-1)2 + (-3)2]1/2 + 4 = 4 + 101/2
ApprovedApproved
Last Activity: 9 Years ago
Arnav
Cos2x = (1 + cos2x) / 2
 
Sin2x = (1 – cos2x) / 2
 
2sinx.cosx = sin2x
 
Hence, now your equation can be written as:-
=(1 + cos2x) / 2 – 3sin2x + 3(1 – cos2x) / 2 + 2
=(1/2 – 3/2)cos2x – 3sin2x +4
= – cos2x – 3sin2x +4
 
Now, Minimum value = – [(-1)2 + (-3)2]1/2 + 4 = 4 – 101/2
 
Also, Maximum value = [(-1)2 + (-3)2]1/2 + 4 = 4 + 101/2
 
Last Activity: 4 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments