Flag Trigonometry> cot70 0 +4cos70 0 = √3...
question mark

cot700+4cos700=√3

Ramesh Tirkey , 10 Years ago
Grade
anser 6 Answers
Latika Leekha

Last Activity: 10 Years ago

Hello student,
cot700 + 4cos700
= (cos 700 )/(sin 700) + 4cos700
= cos 700 (1/sin 700) + 4
We cannot go any further without the help of tables. Taking the help of tables for the sine values, the above expression reduces to
0.34 (1/0.94 + 4)
=1.73 (approx)
= √3

Tapan Kumar Mondal

Last Activity: 7 Years ago

cot(70)+4cos(70)=cos(70)sin(70)+4cos(70)=cos(70)+4cos(70)sin(70)sin(70)=cos(70)+2sin(140)sin(70)=(cos(70)+sin(140))+sin(140)sin(70)=(sin(20)+sin(140))+sin(140)sin(70)=2sin(80)cos(60)+sin(140)sin(70)=2sin(110)cos(30)sin(70)=2∗3–√2=3–√cot⁡(70)+4cos⁡(70)=cos⁡(70)sin⁡(70)+4cos⁡(70)=cos⁡(70)+4cos⁡(70)sin⁡(70)sin⁡(70)=cos⁡(70)+2sin⁡(140)sin⁡(70)=(cos⁡(70)+sin⁡(140))+sin⁡(140)sin⁡(70)=(sin⁡(20)+sin⁡(140))+sin⁡(140)sin⁡(70)=2sin⁡(80)cos⁡(60)+sin⁡(140)sin⁡(70)=2sin⁡(110)cos⁡(30)sin⁡(70)=2∗32=3Note sin(110)=sin(70)sin⁡(110)=sin⁡(70) at the end. cos(60)=12cos⁡(60)=12 and cos(30)=3√2cos⁡(30)=32Identities used: sin(90−x)=cos(x)sin⁡(90−x)=cos⁡(x)sin(a+b)=sin(a)cos(b)+cos(a)sin(b)sin⁡(a+b)=sin⁡(a)cos⁡(b)+cos⁡(a)sin⁡(b)sin(2x)=2sin(x)cos(x)sin⁡(2x)=2sin⁡(x)cos⁡(x)

Anshul soni

Last Activity: 7 Years ago

Cot70+4cos70(Cos70/sin70)+ 4cos70(Cos70+2.2cos70sin70)/sin70(Cos70+2sin140)/sin70{Cos70+2sin(180-40)}/sin70(Cos70+2sin40)/sin70{Cos(90-20)+sin40+sin40)}/sin(90-20){(Sin20+sin40)+sin40}/cos20{2sin30.cos10+sin40}/cos20{Cos10+sin(90-50)}/cos20{Cos10+cos50}/cos20{2cos30.cos20}/cos202cos30√3=Answer

yathartha gupta

Last Activity: 7 Years ago

I think the solution of this should becot700 + 4cos700= (cos 700 )/(sin 700) + 4cos700= cos 700 (1/sin 700) + 4We cannot go any further without the help of tables. Taking the help of tables for the sine values, the above expression reduces to0.34 (1/0.94 + 4)=1.73 (approx)= √3

Vivek

Last Activity: 7 Years ago

It`s best way is to eliminate options if there are present or otherwise take approximation of valuesLike cos70 is some value less than cos60 this how we can solve easily.that is by approx.

Aarushi Ahlawat

Last Activity: 6 Years ago

Here is the solution without using table except of common angles 30 and 90 degrees. Follwing text is in Latex equation format.
=cot(70)+4cos(70)
=tan(20)+4cos(70)
=\frac{sin(20)+4cos(70)cos(20)}{cos(20)}
=\frac{sin(20)+2(cos(70+20)+cos(70-20))}{cos(20)}
=\frac{sin(20)+2(cos(90)+cos(50))}{cos(20)}
=\frac{sin(20)+2(0+cos(30+20))}{cos(20)}
=\frac{sin(20)+2(cos(30)cos(20)-sin(30)sin(20))}{cos(20)}
=\frac{sin(20)+2(\frac{\sqrt{3}}{2}cos(20)-\frac{1}{2}sin(20))}{cos(20)}
=\frac{sin(20)+\sqrt{3}cos(20)-sin(20)}{cos(20)}
=\frac{\sqrt{3}cos(20)}{cos(20)}
=\sqrt{3}
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free