Flag Trigonometry> (a+b+c)^2/(a+b+c)=(cotA/2+cotB/2+cotC/2)/...
question mark

(a+b+c)^2/(a+b+c)=(cotA/2+cotB/2+cotC/2)/(cotA+cotB+cotC)

Ishaan , 10 Years ago
Grade 11
anser 1 Answers
Yatin Modi
Proof:- Numerator=  √s(s-a)/√(s-b)(s-c)  + √s(s-b)/√(s-a)(s-c) + √s(s-c)/√(s-a)(s-b)
After taking LCM we get,
s(s-a)+s(s-b)+s(s-c)/√s(s-a)(s-b)(s-c)
= s[3s-(a+b+c)/∆
 We know that a+b+c = 2s, so
s²/∆= numerator= [(a+b+c)/2]²
 And denominator= cotA+ cotB+ cotC
= CosA/sinA + cosB/sinB + cosC/sinC
By cosine formula and sinA=2∆/bc , sinB=2∆/ac, sinC = 2∆/ab, we get
1/4∆ ×[a²+b²+c²] = denominator.
Now, Numerator/ denominator= (a+b+c)²/(4∆×a²+b²+c²)/4∆
= (a+b+c)²/a²+b²+c²
Therefore, hence proved.
Last Activity: 7 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments