Flag Trigonometry> a ​3 Sin (B-C)+b 3 Sin(C-A)+c 3 Sin ( A-B...
question mark

  1. a​3Sin (B-C)+b3Sin(C-A)+c3Sin ( A-B)= 0
  2. b2Sin2C+c2Sin2B=2bc SinA
  3. a(cos B+cos C)=2(b+c)Sin 2A/2

Sahdev Singh , 7 Years ago
Grade 11
anser 1 Answers
Arun
1.
 
This is equivalent to proving that ∑8sin³(B + C)sin(B – C) = 0 because a = 2RsinA and A + B + C = π. 
8sin³(B + C)sin(B – C) = [6sin(B + C) – 2sin3(B + C)]sin(B – C) 
= 3(cos2C – cos2B) – [cos(2B + 4C) – cos(4B + 2C)] 
= 3(cos2C – cos2B) – [cos(2C – 2A) – cos(2B – 2A), using 2A + 2B + 2C = 2π. 
∑8sin³(B + C)sin(B – C) = [3(cos2C – cos2B) + 3(cos2B – cos2A) + 3(cos2A – cos2C)] – [cos(2C – 2A) – cos(2B – 2A) + cos(2A – 2B) – cos(2C – 2B) + cos(2B – 2C) – cos(2A – 2C)] = 0 
→∑8R³sin³Asin(B – C) = ∑a³sin(B – C) = 0.
 
 
Last Activity: 7 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments