If A,B,C are angles of a triangle,
then prove that cosA+cosB+cosC<3/2
Sandeep Sourav , 12 Years ago
Grade 11
2 Answers
Nirmal Singh.
let angle a= 30 degree angle b = 90 degree angle c = 60 degree
now
cos a + cos b + cos c = cos 30+cos90+cos60
=sqrt 3/2 + 0 + 1/2 = ( sqrt 3+1 )/2 now we can compare the value of cos a + cos b + cos c and 3/2 cosA+cosB+cosC<3/2 proved
Last Activity: 11 Years ago
rajusharma
from JENSEN`S inequality-
f(a)+f(b)+f(c)<3f(a+b+c/3)
if f(x)=cosx
then f(A)=cosA
f(B)=cosB
f(C)=cosC
and A+B+C=Pi
now
f(A)+f(B)+f(C)<3f(A+B+C/3)
cosA+cosB+cosC<3cos(pi/3)
cosA+cosB+cosC<3/2
Last Activity: 11 Years ago
LIVE ONLINE CLASSES
Prepraring for the competition made easy just by live online class.