# PROVE SIN2A+SIN2B-SINC=4COSACOSBSINC

Aman Bansal
592 Points
11 years ago

Dear bayana,

he double angle formula:
sin 2Θ = 2 sin Θ cos Θ

sin 2A + sin 2B - sin 2C
... = 2 sin A cos A + 2 sin B cos B - 2 sin C cos C

Since A + B + C = π ;
A is a supplement angle of ( B + C )
B is a supplement angle of ( A + C )
C is a supplement angle of ( A + B )
TAKE NOTE that the sine of supplementary angles are equal !!!

sin 2A + sin 2B - sin 2C
... = 2 sin A cos A + 2 sin B cos B - 2 sin C cos C
... = 2 sin ( B + C ) cos A + 2 sin ( A + C ) cos B - 2 sin ( A + B ) cos C

From the Sum of Angle Identity:
sin ( α + ß ) = sin α cos ß + cos α sin ß

sin 2A + sin 2B - sin 2C
... = 2 sin A cos A + 2 sin B cos B - 2 sin C cos C
... = 2 sin ( B + C ) cos A + 2 sin ( A + C ) cos B - 2 sin ( A + B ) cos C
... = 2 ( sin B cos C + cos B sin C ) cos A
..... ..... + 2 ( sin A cos C + cos A sin C ) cos B
..... ..... – 2 ( sin A cos B + cos A sin B ) cos C
... = 2 cos A sin B cos C + 2 cos A cos B sin C
..... ..... + 2 sin A cos B cos C + 2 cos A cos B sin C
..... ..... – 2 sin A cos B cos C – 2 cos A sin B cos C
... = 2 cos A cos B sin C + 2 cos A cos B sin C
... = 4 cos A cos B sin C

Cracking IIT just got more exciting,It s not just all about getting assistance from IITians, alongside Target Achievement and Rewards play an important role. ASKIITIANS has it all for you, wherein you get assistance only from IITians for your preparation and win by answering queries in the discussion forums. Reward points 5 + 15 for all those who upload their pic and download the ASKIITIANS Toolbar, just a simple  to download the toolbar….

So start the brain storming…. become a leader with Elite Expert League ASKIITIANS

Thanks

Aman Bansal

rahul dahiya
18 Points
11 years ago

first of all ur question is wrong

its sin2a+sin2b-sin2c=4 cosa cosb sinc

applying SIN2X=2SINXCOSX

A+B+C=180

AND A IS SUPPLEMENT ANGLE OF (B+C)

B IS SUPLEMET OF (A+C) AND C OF (A+B)

WE GET

SIN2A+SIN2B+SIN2C=2SIN(B+C)COSA+2SIN(A+C)COSB-2SIN(A+B)COSC

NOW APPLYING SUM PROPERTY

SIN(X+Y)=SINX COSY + COSX SINY

AND SOLVING WE GET 4COSACOBSINC