MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade: 12
        

                                           2sinß




                                    1 + sinß + cosß


 


 


= k


 


then find 


                           1 + sinß - cosß


 




                                 1+ sinß


 

10 years ago

Answers : (1)

askiitianexpert arulmani
6 Points
							

Given : 2 sinß / (1 + sinß + cosß) = k

Multiply numerator & denominator by (1 + sinß - cosß)

We get : 2 sinß (1 + sinß - cosß) / (1 + sinß + cosß) (1 + sinß - cosß)

Denominator is of the form (a + b) (a - b) which is (a^2 - b^2)

Hence this further becomes : 2 sinß (1 + sinß - cosß) / ((1 + sinß)^2 - cos^2ß)

Expanding the denominator, we get : 2 sinß (1 + sinß - cosß) / (1 + sin^2ß + 2sinß - cos^2ß)

Substitute 1 with sin^2ß + cos^2ß in the denominator : 2 sinß (1 + sinß - cosß) / (sin^2ßcos^2ß + sin^2ß + 2sinß - cos^2ß)

Cancelling cos^2ß - cos^2ß, we get : 2 sinß (1 + sinß - cosß) / (sin^2ß + sin^2ß + 2sinß)

Further simplify as : 2 sinß (1 + sinß - cosß) / (2sin^2ß +  2sinß)

=> 2 sinß (1 + sinß - cosß) / 2 sinß (1 +  sinß)

Cancelling 2 sinß from both numerator & denominator, we get : (1 + sinß - cosß) / (1 +  sinß)

Since the given equation is simplified to this form, the value of (1 + sinß - cosß) / (1 +  sinß) IS ALSO "k"

Solution : Given  2 sinß / (1 + sinß + cosß) = k, then (1 + sinß - cosß) / (1 +  sinß) = k


10 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 31 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details